DataViz-Agent / visualization_prompt.py
Mustehson
Initial Commit
4858ba5
raw
history blame
3.82 kB
barGraphIntstruction = '''
Where data is: {
labels: string[]
values: {\data: number[], label: string}[]
}
// Examples of usage:
Each label represents a column on the x axis.
Each array in values represents a different entity.
Here we are looking at average income for each month.
{
labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
values: [{data:[21.5, 25.0, 47.5, 64.8, 105.5, 133.2], label: 'Income'}],
}
Here we are looking at the performance of american and european players for each series. Since there are two entities, we have two arrays in values.
{
labels: ['series A', 'series B', 'series C'],
values: [{data:[10, 15, 20], label: 'American'}, {data:[20, 25, 30], label: 'European'}],
}
'''
horizontalBarGraphIntstruction = '''
Where data is: {
labels: string[]
values: {\data: number[], label: string}[]
}
// Examples of usage:
Each label represents a column on the x axis.
Each array in values represents a different entity.
Here we are looking at average income for each month.
{
labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
values: [{data:[21.5, 25.0, 47.5, 64.8, 105.5, 133.2], label: 'Income'}],
}
Here we are looking at the performance of american and european players for each series. Since there are two entities, we have two arrays in values.
{
labels: ['series A', 'series B', 'series C'],
values: [{data:[10, 15, 20], label: 'American'}, {data:[20, 25, 30], label: 'European'}],
}
'''
lineGraphIntstruction = '''
Where data is: {
xValues: number[] | string[]
yValues: { data: number[]; label: string }[]
}
// Examples of usage:
Here we are looking at the momentum of a body as a function of mass.
{
xValues: ['2020', '2021', '2022', '2023', '2024'],
yValues: [
{ data: [2, 5.5, 2, 8.5, 1.5]},
],
}
Here we are looking at the performance of american and european players for each year. Since there are two entities, we have two arrays in yValues.
{
xValues: ['2020', '2021', '2022', '2023', '2024'],
yValues: [
{ data: [2, 5.5, 2, 8.5, 1.5], label: 'American' },
{ data: [2, 5.5, 2, 8.5, 1.5], label: 'European' },
],
}
'''
pieChartIntstruction = '''
Where data is: {
labels: string
values: number
}[]
// Example usage:
[
{ id: 0, value: 10, label: 'series A' },
{ id: 1, value: 15, label: 'series B' },
{ id: 2, value: 20, label: 'series C' },
],
'''
scatterPlotIntstruction = '''
Where data is: {
series: {
data: { x: number; y: number; id: number }[]
label: string
}[]
}
// Examples of usage:
1. Here each data array represents the points for a different entity.
We are looking for correlation between amount spent and quantity bought for men and women.
{
series: [
{
data: [
{ x: 100, y: 200, id: 1 },
{ x: 120, y: 100, id: 2 },
{ x: 170, y: 300, id: 3 },
],
label: 'Men',
},
{
data: [
{ x: 300, y: 300, id: 1 },
{ x: 400, y: 500, id: 2 },
{ x: 200, y: 700, id: 3 },
],
label: 'Women',
}
],
}
2. Here we are looking for correlation between the height and weight of players.
{
series: [
{
data: [
{ x: 180, y: 80, id: 1 },
{ x: 170, y: 70, id: 2 },
{ x: 160, y: 60, id: 3 },
],
label: 'Players',
},
],
}
// Note: Each object in the 'data' array represents a point on the scatter plot.
// The 'x' and 'y' values determine the position of the point, and 'id' is a unique identifier.
// Multiple series can be represented, each as an object in the outer array.
'''
graph_instructions = {
"bar": barGraphIntstruction,
"horizontal_bar": horizontalBarGraphIntstruction,
"line": lineGraphIntstruction,
"pie": pieChartIntstruction,
"scatter": scatterPlotIntstruction
}