Spaces:
Runtime error
Runtime error
Mustehson
commited on
Commit
·
ca86d9c
1
Parent(s):
e44c00b
Fixed Reason, Type extraction
Browse files
app.py
CHANGED
@@ -139,7 +139,7 @@ Recommend a visualization:
|
|
139 |
])
|
140 |
|
141 |
final_prompt = prompt.format_prompt(question=text_query,
|
142 |
-
sql_query=sql_query, results=sql_result)
|
143 |
response = run_llm(final_prompt)
|
144 |
response = response.replace('```', '')
|
145 |
lines = response.strip().split('\n')
|
@@ -157,7 +157,7 @@ def format_data(text_query, sql_query, sql_result, visualization_type):
|
|
157 |
|
158 |
template = ChatPromptTemplate.from_messages([
|
159 |
("system", "You are a Data expert who formats data according to the required needs. You are given the question asked by the user, it's sql query, the result of the query and the format you need to format it in."),
|
160 |
-
("human", "For the given question: {question}\n\nSQL query: {sql_query}\n\Result: {results}\n\nUse the following example to structure the data: {instructions}. If there is None in Result please change it to '0'. Just give the json string. Do not format it.
|
161 |
])
|
162 |
|
163 |
|
@@ -165,6 +165,8 @@ def format_data(text_query, sql_query, sql_result, visualization_type):
|
|
165 |
results=sql_result, instructions=instruction)
|
166 |
print(prompt)
|
167 |
formatted_data = run_llm(prompt)
|
|
|
|
|
168 |
print(f'Formatted Data {formatted_data}')
|
169 |
return json.loads(formatted_data.replace('.', '').strip())
|
170 |
|
@@ -226,6 +228,11 @@ def main(table, text_query):
|
|
226 |
except Exception as e:
|
227 |
return generate_output(schema, prompt, generated_sql_query, fig, pd.DataFrame([{"error": f"❌ Unable to execute the SQL query. {e}"}]))
|
228 |
|
|
|
|
|
|
|
|
|
|
|
229 |
try:
|
230 |
visualization_type, reason = get_visualization_type(text_query=text_query,
|
231 |
sql_query=generated_sql_query, sql_result=sql_query_result)
|
@@ -237,9 +244,9 @@ def main(table, text_query):
|
|
237 |
return generate_output(schema, prompt, generated_sql_query,
|
238 |
fig, sql_query_df)
|
239 |
|
|
|
240 |
if visualization_type != 'none':
|
241 |
try:
|
242 |
-
|
243 |
plot = visualize_result(text_query=text_query, sql_query=generated_sql_query,
|
244 |
sql_result=sql_query_result, visualization_type=visualization_type)
|
245 |
|
|
|
139 |
])
|
140 |
|
141 |
final_prompt = prompt.format_prompt(question=text_query,
|
142 |
+
sql_query=sql_query, results=sql_result[:20])
|
143 |
response = run_llm(final_prompt)
|
144 |
response = response.replace('```', '')
|
145 |
lines = response.strip().split('\n')
|
|
|
157 |
|
158 |
template = ChatPromptTemplate.from_messages([
|
159 |
("system", "You are a Data expert who formats data according to the required needs. You are given the question asked by the user, it's sql query, the result of the query and the format you need to format it in."),
|
160 |
+
("human", "For the given question: {question}\n\nSQL query: {sql_query}\n\Result: {results}\n\nUse the following example to structure the data: {instructions}. If there is None in Result please change it to '0'. Just give the json string. Do not format it."),
|
161 |
])
|
162 |
|
163 |
|
|
|
165 |
results=sql_result, instructions=instruction)
|
166 |
print(prompt)
|
167 |
formatted_data = run_llm(prompt)
|
168 |
+
formatted_data = formatted_data.reaplce('```', '')
|
169 |
+
formatted_data = formatted_data.reaplce('json', '')
|
170 |
print(f'Formatted Data {formatted_data}')
|
171 |
return json.loads(formatted_data.replace('.', '').strip())
|
172 |
|
|
|
228 |
except Exception as e:
|
229 |
return generate_output(schema, prompt, generated_sql_query, fig, pd.DataFrame([{"error": f"❌ Unable to execute the SQL query. {e}"}]))
|
230 |
|
231 |
+
if len(sql_query_result) >= 100:
|
232 |
+
gr.Warning(f"⚠️ Data is too large for visualization. Please refine your query.")
|
233 |
+
return generate_output(schema, prompt, generated_sql_query,
|
234 |
+
fig, sql_query_df)
|
235 |
+
|
236 |
try:
|
237 |
visualization_type, reason = get_visualization_type(text_query=text_query,
|
238 |
sql_query=generated_sql_query, sql_result=sql_query_result)
|
|
|
244 |
return generate_output(schema, prompt, generated_sql_query,
|
245 |
fig, sql_query_df)
|
246 |
|
247 |
+
|
248 |
if visualization_type != 'none':
|
249 |
try:
|
|
|
250 |
plot = visualize_result(text_query=text_query, sql_query=generated_sql_query,
|
251 |
sql_result=sql_query_result, visualization_type=visualization_type)
|
252 |
|