Mustehson
Added Text to Validation
99c2740
raw
history blame
11.3 kB
import os
import json
import duckdb
import gradio as gr
import pandas as pd
import pandera as pa
from pandera import Column
import ydata_profiling as pp
from huggingface_hub import InferenceClient
from prompt import PROMPT_PANDERA, PANDERA_USER_INPUT_PROMPT
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
INPUT_PROMPT = '''
Here is the frist few samples of data:
<Sample Data>
{data}
</Sample Data<>
'''
USER_INPUT = '''
Here is the frist few samples of data:
<Sample Data>
{data}
</Sample Data<>
Here is the User Description:
<User Description>
{user_description}
</User Description>
'''
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables_names(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_table_names(schema_name):
tables = get_tables_names(schema_name)
return gr.update(choices=tables)
def get_data_df(schema):
print('Getting Dataframe from the Database')
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
def chat_template(system_prompt, user_prompt, df):
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt.format(data=df.head().to_json(orient='records'))},
]
return messages
def chat_template_user(system_prompt, user_prompt, user_description, df):
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt.format(data=df.head(1).to_json(orient='records'), user_description=user_description)},
]
return messages
def run_llm(messages):
try:
response = client.chat_completion(messages, max_tokens=1024)
print(response.choices[0].message.content)
tests = json.loads(response.choices[0].message.content)
except Exception as e:
return e
return tests
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return full_path
def describe(df):
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
numerical_info.rename(columns={'index': 'column'}, inplace=True)
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
categorical_info.rename(columns={'index': 'column'}, inplace=True)
return numerical_info, categorical_info
def validate_pandera(tests, df):
validation_results = []
for test in tests:
column_name = test['column_name']
try:
rule = eval(test['pandera_rule'])
validated_column = rule(df[[column_name]])
validation_results.append({
"Columns": column_name,
"Result": "✅ Pass"
})
except Exception as e:
validation_results.append({
"Columns": column_name,
"Result": f"❌ Fail - {str(e)}"
})
return pd.DataFrame(validation_results)
def statistics(df):
profile = pp.ProfileReport(df)
report_dict = profile.get_description()
description, alerts = report_dict.table, report_dict.alerts
# Statistics
mapping = {
'n': 'Number of observations',
'n_var': 'Number of variables',
'n_cells_missing': 'Number of cells missing',
'n_vars_with_missing': 'Number of columns with missing data',
'n_vars_all_missing': 'Columns with all missing data',
'p_cells_missing': 'Missing cells (%)',
'n_duplicates': 'Duplicated rows',
'p_duplicates': 'Duplicated rows (%)',
}
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
# Add flattened types information
if 'Text' in description.get('types', {}):
updated_data['Number of text columns'] = description['types']['Text']
if 'Categorical' in description.get('types', {}):
updated_data['Number of categorical columns'] = description['types']['Categorical']
if 'Numeric' in description.get('types', {}):
updated_data['Number of numeric columns'] = description['types']['Numeric']
if 'DateTime' in description.get('types', {}):
updated_data['Number of datetime columns'] = description['types']['DateTime']
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
df_statistics['Value'] = df_statistics['Value'].astype(int)
# Alerts
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
return df_statistics, df_alerts
# Main Function
def main(table):
schema = get_table_schema(table)
df = get_data_df(schema)
df_statistics, df_alerts = statistics(df)
describe_num, describe_cat = describe(df)
messages = chat_template(system_prompt=PROMPT_PANDERA, user_prompt=INPUT_PROMPT, df=df)
tests = run_llm(messages)
print(tests)
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
def user_results(table, text_query):
schema = get_table_schema(table)
df = get_data_df(schema)
messages = chat_template_user(system_prompt=PANDERA_USER_INPUT_PROMPT,
user_prompt=USER_INPUT, user_description=text_query,
df=df)
print(messages)
tests = run_llm(messages)
print(f'Generated Tests from user input: {tests}')
if isinstance(tests, Exception):
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
return tests, pd.DataFrame([])
tests_df = pd.DataFrame(tests)
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
pandera_results = validate_pandera(tests, df)
return tests_df, pandera_results
# Custom CSS styling
custom_css = """
print('Validated Tests with Pandera')
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Dataset Test Workflow</strong>
<br>
<span style='font-size: 20px;'>Implement and Automate Data Validation Processes.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Row():
generate_result = gr.Button("Validate Data", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Description"):
with gr.Row():
with gr.Column():
data_description = gr.DataFrame(label="Data Description", value=[], interactive=False)
with gr.Row():
with gr.Column():
describe_cat = gr.DataFrame(label="Categorical Information", value=[], interactive=False)
with gr.Column():
describe_num = gr.DataFrame(label="Numerical Information", value=[], interactive=False)
with gr.Tab("Alerts"):
data_alerts = gr.DataFrame(label="Alerts", value=[], interactive=False)
with gr.Tab("Rules & Validations"):
tests_output = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
test_result_output = gr.DataFrame(label="Validation Result", value=[], interactive=False)
with gr.Tab("Data"):
result_output = gr.DataFrame(label="Dataframe (10 Rows)", value=[], interactive=False)
with gr.Tab('Text to Validation'):
with gr.Row():
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter Text Query to Generate Validation e.g. Validate that the incident_zip column contains valid 5-digit ZIP codes.")
with gr.Row():
with gr.Column():
pass
with gr.Column(scale=1, min_width=50):
user_generate_result = gr.Button("Validate Data", variant="primary" )
with gr.Row():
with gr.Column():
query_tests = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
with gr.Column():
query_result = gr.DataFrame(label="Validation Result", value=[], interactive=False)
schema_dropdown.change(update_table_names, inputs=schema_dropdown, outputs=tables_dropdown)
generate_result.click(main, inputs=[tables_dropdown], outputs=[result_output, data_description, data_alerts, describe_cat, describe_num, tests_output, test_result_output])
user_generate_result.click(user_results, inputs=[tables_dropdown, query_input], outputs=[query_tests, query_result])
if __name__ == "__main__":
demo.launch(debug=True)