Mustehson commited on
Commit
35f277a
·
verified ·
1 Parent(s): 99c2740

Update prompt

Browse files
Files changed (1) hide show
  1. prompt.py +8 -9
prompt.py CHANGED
@@ -75,7 +75,7 @@ You will be provided with the first few rows of data below that represents the d
75
  Follow this process:
76
 
77
  1. **Observe the sample data.**
78
- 2. Observe description and create a valid pander check
79
 
80
  Here are the valid **Pandera** Checks that you can use:
81
  1. 'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)'
@@ -101,20 +101,19 @@ Follow this process:
101
  21. 'pa.Check.str_startswith(string, **kwargs)' Checks if a string starts with the specified substring.
102
  22. 'pa.Check.unique_values_eq(values, **kwargs)' Checks if the unique values in a column are equal to the specified set of values.
103
  23. 'pa.Check(lambda x: x )' with lambda functions for custom logic.
104
- 24. 'pa.Column(int, nullable=False, unique=True, name='column_name') For unqiue values
105
- **ALWAY USE THE COMPLETE PANDERA SYNTAX
106
 
107
  3. For each column, generate a **column name**, **rule name**, and a **Pandera rule** based on the user’s description. Example structure:
108
 
109
  ```json
110
  [
111
- {
112
- "column_name": "OS",
113
- "rule_name": "Allowed Operating Systems",
114
- "pandera_rule": "Column(str, pa.Check.isin(['macOS', 'Windows', 'Linux']), nullable=False, name='OS')"
115
- }
116
  ]
117
-
118
  4. Repeat this process for a maximum of 5 columns or based on user input. Group all the rules into a single JSON object and return it.
119
  IMPORTANT: You should only generate rules based on the user’s input for each column. Return the final rules as a single JSON object, ensuring that the user's instructions are reflected in the validations.
120
 
 
75
  Follow this process:
76
 
77
  1. **Observe the sample data.**
78
+ 2. Observe description and create a valid check
79
 
80
  Here are the valid **Pandera** Checks that you can use:
81
  1. 'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)'
 
101
  21. 'pa.Check.str_startswith(string, **kwargs)' Checks if a string starts with the specified substring.
102
  22. 'pa.Check.unique_values_eq(values, **kwargs)' Checks if the unique values in a column are equal to the specified set of values.
103
  23. 'pa.Check(lambda x: x )' with lambda functions for custom logic.
104
+ **ALWAY USE THE COMPLETE PANDERA SYNTAX**
 
105
 
106
  3. For each column, generate a **column name**, **rule name**, and a **Pandera rule** based on the user’s description. Example structure:
107
 
108
  ```json
109
  [
110
+ {
111
+ "column_name": "unique_key",
112
+ "rule_name": "Unique Identifiers",
113
+ "pandera_rule": "pa.Column(int, nullable=False, unique=True, name='unique_key')"
114
+ }
115
  ]
116
+
117
  4. Repeat this process for a maximum of 5 columns or based on user input. Group all the rules into a single JSON object and return it.
118
  IMPORTANT: You should only generate rules based on the user’s input for each column. Return the final rules as a single JSON object, ensuring that the user's instructions are reflected in the validations.
119