Spaces:
Sleeping
Sleeping
Mustehson
commited on
Commit
·
9d0ca90
1
Parent(s):
d43019d
Updated Prompt
Browse files
app.py
CHANGED
@@ -92,20 +92,16 @@ def describe(df):
|
|
92 |
def validate_pandera(tests, df):
|
93 |
validation_results = []
|
94 |
|
95 |
-
# Loop through each test rule and validate each column separately
|
96 |
for test in tests:
|
97 |
column_name = test['column_name']
|
98 |
-
rule = eval(test['pandera_rule']) # Evaluate the Pandera column rule
|
99 |
-
|
100 |
try:
|
101 |
-
|
102 |
-
validated_column = rule(df[[column_name]])
|
103 |
validation_results.append({
|
104 |
"Columns": column_name,
|
105 |
"Result": "✅ Pass"
|
106 |
})
|
107 |
except Exception as e:
|
108 |
-
# If validation fails, catch the exception and mark the column as 'Fail'
|
109 |
validation_results.append({
|
110 |
"Columns": column_name,
|
111 |
"Result": f"❌ Fail - {str(e)}"
|
|
|
92 |
def validate_pandera(tests, df):
|
93 |
validation_results = []
|
94 |
|
|
|
95 |
for test in tests:
|
96 |
column_name = test['column_name']
|
|
|
|
|
97 |
try:
|
98 |
+
rule = eval(test['pandera_rule'])
|
99 |
+
validated_column = rule(df[[column_name]])
|
100 |
validation_results.append({
|
101 |
"Columns": column_name,
|
102 |
"Result": "✅ Pass"
|
103 |
})
|
104 |
except Exception as e:
|
|
|
105 |
validation_results.append({
|
106 |
"Columns": column_name,
|
107 |
"Result": f"❌ Fail - {str(e)}"
|
prompt.py
CHANGED
@@ -8,6 +8,7 @@ Follow this process:
|
|
8 |
2. **For each column**, create a validation rule using Pandera syntax.
|
9 |
Here are the valid pandera check class methods DO NOT USE ANYOTHER METHODS OTHER THAN THE BELOW GIVEN METHODS:
|
10 |
DO NOT USE SINGLE backslashes \ BUT USE DOUBLE backslashes \\ IN PATTERN
|
|
|
11 |
[
|
12 |
'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)',
|
13 |
'pa.Check.eq(value, **kwargs)',
|
@@ -32,7 +33,8 @@ Follow this process:
|
|
32 |
'pa.Check.str_startswith(string, **kwargs)',
|
33 |
'pa.Check.unique_values_eq(values, **kwargs)'
|
34 |
]
|
35 |
-
|
|
|
36 |
3. Ensure that each rule specifies the expected data type and applies necessary checks such as:
|
37 |
name argument should be a valid column name. DO NOT USE ANYOTHER PANDERA
|
38 |
- **Data Type Validation** (e.g., `pa.Column(int, nullable=False, name="age")` ensures integers)
|
|
|
8 |
2. **For each column**, create a validation rule using Pandera syntax.
|
9 |
Here are the valid pandera check class methods DO NOT USE ANYOTHER METHODS OTHER THAN THE BELOW GIVEN METHODS:
|
10 |
DO NOT USE SINGLE backslashes \ BUT USE DOUBLE backslashes \\ IN PATTERN
|
11 |
+
USE CORRECT SYNTAX AS SHOWN GIVEN BELOW
|
12 |
[
|
13 |
'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)',
|
14 |
'pa.Check.eq(value, **kwargs)',
|
|
|
33 |
'pa.Check.str_startswith(string, **kwargs)',
|
34 |
'pa.Check.unique_values_eq(values, **kwargs)'
|
35 |
]
|
36 |
+
|
37 |
+
|
38 |
3. Ensure that each rule specifies the expected data type and applies necessary checks such as:
|
39 |
name argument should be a valid column name. DO NOT USE ANYOTHER PANDERA
|
40 |
- **Data Type Validation** (e.g., `pa.Column(int, nullable=False, name="age")` ensures integers)
|