Mustehson commited on
Commit
9d0ca90
·
1 Parent(s): d43019d

Updated Prompt

Browse files
Files changed (2) hide show
  1. app.py +2 -6
  2. prompt.py +3 -1
app.py CHANGED
@@ -92,20 +92,16 @@ def describe(df):
92
  def validate_pandera(tests, df):
93
  validation_results = []
94
 
95
- # Loop through each test rule and validate each column separately
96
  for test in tests:
97
  column_name = test['column_name']
98
- rule = eval(test['pandera_rule']) # Evaluate the Pandera column rule
99
-
100
  try:
101
- # Apply the rule to the column and validate
102
- validated_column = rule(df[[column_name]]) # Validate the specific column
103
  validation_results.append({
104
  "Columns": column_name,
105
  "Result": "✅ Pass"
106
  })
107
  except Exception as e:
108
- # If validation fails, catch the exception and mark the column as 'Fail'
109
  validation_results.append({
110
  "Columns": column_name,
111
  "Result": f"❌ Fail - {str(e)}"
 
92
  def validate_pandera(tests, df):
93
  validation_results = []
94
 
 
95
  for test in tests:
96
  column_name = test['column_name']
 
 
97
  try:
98
+ rule = eval(test['pandera_rule'])
99
+ validated_column = rule(df[[column_name]])
100
  validation_results.append({
101
  "Columns": column_name,
102
  "Result": "✅ Pass"
103
  })
104
  except Exception as e:
 
105
  validation_results.append({
106
  "Columns": column_name,
107
  "Result": f"❌ Fail - {str(e)}"
prompt.py CHANGED
@@ -8,6 +8,7 @@ Follow this process:
8
  2. **For each column**, create a validation rule using Pandera syntax.
9
  Here are the valid pandera check class methods DO NOT USE ANYOTHER METHODS OTHER THAN THE BELOW GIVEN METHODS:
10
  DO NOT USE SINGLE backslashes \ BUT USE DOUBLE backslashes \\ IN PATTERN
 
11
  [
12
  'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)',
13
  'pa.Check.eq(value, **kwargs)',
@@ -32,7 +33,8 @@ Follow this process:
32
  'pa.Check.str_startswith(string, **kwargs)',
33
  'pa.Check.unique_values_eq(values, **kwargs)'
34
  ]
35
- ALSO DONT USE REGEX FOR VALIDATIONS
 
36
  3. Ensure that each rule specifies the expected data type and applies necessary checks such as:
37
  name argument should be a valid column name. DO NOT USE ANYOTHER PANDERA
38
  - **Data Type Validation** (e.g., `pa.Column(int, nullable=False, name="age")` ensures integers)
 
8
  2. **For each column**, create a validation rule using Pandera syntax.
9
  Here are the valid pandera check class methods DO NOT USE ANYOTHER METHODS OTHER THAN THE BELOW GIVEN METHODS:
10
  DO NOT USE SINGLE backslashes \ BUT USE DOUBLE backslashes \\ IN PATTERN
11
+ USE CORRECT SYNTAX AS SHOWN GIVEN BELOW
12
  [
13
  'pa.Check.between(min_value, max_value, include_min=True, include_max=True, **kwargs)',
14
  'pa.Check.eq(value, **kwargs)',
 
33
  'pa.Check.str_startswith(string, **kwargs)',
34
  'pa.Check.unique_values_eq(values, **kwargs)'
35
  ]
36
+
37
+
38
  3. Ensure that each rule specifies the expected data type and applies necessary checks such as:
39
  name argument should be a valid column name. DO NOT USE ANYOTHER PANDERA
40
  - **Data Type Validation** (e.g., `pa.Column(int, nullable=False, name="age")` ensures integers)