Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,13 @@ import gradio as gr
|
|
5 |
import pandas as pd
|
6 |
import pandera as pa
|
7 |
from pandera import Column
|
8 |
-
import
|
9 |
-
from dataprep.eda import compute
|
10 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
11 |
-
from .utils import (
|
12 |
-
format_num_stats, format_cat_stats,
|
13 |
-
format_ov_stats, format_insights
|
14 |
-
)
|
15 |
from langsmith import traceable
|
16 |
from langchain import hub
|
17 |
import warnings
|
18 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
19 |
|
20 |
-
|
21 |
# Height of the Tabs Text Area
|
22 |
TAB_LINES = 8
|
23 |
|
@@ -43,7 +37,7 @@ for model in models:
|
|
43 |
print(f"Error for model {model}: {e}")
|
44 |
continue
|
45 |
|
46 |
-
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=
|
47 |
#---------------------------------------
|
48 |
|
49 |
#-----LOAD PROMPT FROM LANCHAIN HUB-----
|
@@ -69,98 +63,44 @@ def get_tables_names(schema_name):
|
|
69 |
def update_table_names(schema_name):
|
70 |
tables = get_tables_names(schema_name)
|
71 |
return gr.update(choices=tables)
|
72 |
-
|
73 |
-
# Get Schema
|
74 |
-
def get_table_schema(table):
|
75 |
-
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
|
76 |
-
ddl_create = result.iloc[0,0]
|
77 |
-
parent_database = result.iloc[0,1]
|
78 |
-
schema_name = result.iloc[0,2]
|
79 |
-
full_path = f"{parent_database}.{schema_name}.{table}"
|
80 |
-
if schema_name != "main":
|
81 |
-
old_path = f"{schema_name}.{table}"
|
82 |
-
else:
|
83 |
-
old_path = table
|
84 |
-
ddl_create = ddl_create.replace(old_path, full_path)
|
85 |
-
return full_path
|
86 |
-
|
87 |
def get_data_df(schema):
|
88 |
print('Getting Dataframe from the Database')
|
89 |
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
|
90 |
|
91 |
-
<<<<<<< HEAD
|
92 |
-
def calcualte_stats(df):
|
93 |
-
indev_stats = []
|
94 |
-
cols = []
|
95 |
-
|
96 |
-
_df = df.copy()
|
97 |
-
|
98 |
-
num_cols = _df.select_dtypes(include=['number'], exclude=['datetime']).columns
|
99 |
-
cat_cols = _df.select_dtypes(include=['object'], exclude=['datetime']).columns
|
100 |
-
|
101 |
-
|
102 |
-
_all_stats = compute(_df)
|
103 |
-
all_stats = format_ov_stats(_all_stats['stats'])
|
104 |
-
insights = format_insights(_all_stats['overview_insights'])
|
105 |
-
|
106 |
-
for i, col in enumerate(random.sample(num_cols.tolist()+cat_cols.tolist(), 2)):
|
107 |
-
_indv_data = compute(_df, col)
|
108 |
-
|
109 |
-
if col in cat_cols:
|
110 |
-
indev_data_cat = format_cat_stats(_indv_data["data"])
|
111 |
-
|
112 |
-
indev_stats.append(pd.DataFrame([indev_data_cat['Overview']], index=[f'{col}_stats']).T)
|
113 |
-
|
114 |
-
elif col in num_cols:
|
115 |
-
try:
|
116 |
-
indev_data_num = format_num_stats(_indv_data["data"])
|
117 |
-
except:
|
118 |
-
indev_data_num = format_cat_stats(_indv_data["data"])
|
119 |
-
|
120 |
-
indev_stats.append(pd.DataFrame([indev_data_num['Overview']], index=[f'{col}_stats']).T)
|
121 |
-
|
122 |
-
return {
|
123 |
-
"overall_stats": pd.DataFrame(all_stats[0], index=['Dataset Statistics']).T,
|
124 |
-
"insights": insights,
|
125 |
-
"stats_1": indev_stats[0],
|
126 |
-
"stats_2": indev_stats[1]
|
127 |
-
}
|
128 |
-
|
129 |
def df_summary(df):
|
130 |
summary = []
|
131 |
|
132 |
for column in df.columns:
|
133 |
if pd.api.types.is_numeric_dtype(df[column]):
|
134 |
summary.append({
|
135 |
-
"column": column,
|
136 |
-
"
|
137 |
-
"
|
|
|
|
|
|
|
|
|
138 |
})
|
139 |
|
140 |
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
|
141 |
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
|
142 |
|
143 |
summary.append({
|
144 |
-
"column": column,
|
145 |
-
"
|
|
|
|
|
|
|
|
|
|
|
146 |
})
|
147 |
-
|
148 |
summary_df = pd.DataFrame(summary)
|
149 |
return summary_df.reset_index(drop=True)
|
150 |
-
=======
|
151 |
-
>>>>>>> parent of 7c2e7ac (Summary Added)
|
152 |
|
153 |
def format_prompt(df):
|
154 |
-
|
155 |
-
"max": df.max(),
|
156 |
-
"min": df.min(),
|
157 |
-
"top": df.mode().iloc[0],
|
158 |
-
"nunique": df.nunique(),
|
159 |
-
"count": df.count(),
|
160 |
-
"dtype": df.dtypes.astype(str)
|
161 |
-
}).reset_index().rename(columns={"index": "column"})
|
162 |
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
|
163 |
-
summary=
|
164 |
def format_user_prompt(df):
|
165 |
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
|
166 |
|
@@ -177,6 +117,33 @@ def run_llm(messages):
|
|
177 |
return tests
|
178 |
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
def validate_pandera(tests, df):
|
181 |
validation_results = []
|
182 |
|
@@ -196,6 +163,41 @@ def validate_pandera(tests, df):
|
|
196 |
})
|
197 |
return pd.DataFrame(validation_results)
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
#---------------------------------------
|
200 |
|
201 |
|
@@ -204,26 +206,22 @@ def validate_pandera(tests, df):
|
|
204 |
def main(table):
|
205 |
schema = get_table_schema(table)
|
206 |
df = get_data_df(schema)
|
207 |
-
|
|
|
|
|
208 |
messages = format_prompt(df=df)
|
209 |
tests = run_llm(messages)
|
210 |
print(tests)
|
211 |
|
212 |
-
stats = calcualte_stats(df)
|
213 |
-
df_insights = stats['insights']
|
214 |
-
df_statistics = stats['overall_stats']
|
215 |
-
df_stat_1 = stats['stats_1']
|
216 |
-
df_stat_2 = stats['stats_2']
|
217 |
-
|
218 |
if isinstance(tests, Exception):
|
219 |
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
|
220 |
-
return df.head(10), df_statistics,
|
221 |
|
222 |
tests_df = pd.DataFrame(tests)
|
223 |
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
|
224 |
pandera_results = validate_pandera(tests, df)
|
225 |
|
226 |
-
return df.head(10), df_statistics,
|
227 |
|
228 |
def user_results(table, text_query):
|
229 |
|
@@ -328,3 +326,4 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"
|
|
328 |
if __name__ == "__main__":
|
329 |
demo.launch(debug=True)
|
330 |
|
|
|
|
5 |
import pandas as pd
|
6 |
import pandera as pa
|
7 |
from pandera import Column
|
8 |
+
import ydata_profiling as pp
|
|
|
9 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
|
|
|
|
|
|
|
|
10 |
from langsmith import traceable
|
11 |
from langchain import hub
|
12 |
import warnings
|
13 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
14 |
|
|
|
15 |
# Height of the Tabs Text Area
|
16 |
TAB_LINES = 8
|
17 |
|
|
|
37 |
print(f"Error for model {model}: {e}")
|
38 |
continue
|
39 |
|
40 |
+
llm = ChatHuggingFace(llm=endpoint).bind(max_tokens=8192)
|
41 |
#---------------------------------------
|
42 |
|
43 |
#-----LOAD PROMPT FROM LANCHAIN HUB-----
|
|
|
63 |
def update_table_names(schema_name):
|
64 |
tables = get_tables_names(schema_name)
|
65 |
return gr.update(choices=tables)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def get_data_df(schema):
|
67 |
print('Getting Dataframe from the Database')
|
68 |
return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def df_summary(df):
|
71 |
summary = []
|
72 |
|
73 |
for column in df.columns:
|
74 |
if pd.api.types.is_numeric_dtype(df[column]):
|
75 |
summary.append({
|
76 |
+
"column": column,
|
77 |
+
"max": df[column].max(),
|
78 |
+
"min": df[column].min(),
|
79 |
+
"count": df[column].count(),
|
80 |
+
"nunique": df[column].nunique(),
|
81 |
+
"dtype": str(df[column].dtype),
|
82 |
+
"top": None
|
83 |
})
|
84 |
|
85 |
elif pd.api.types.is_categorical_dtype(df[column]) or pd.api.types.is_object_dtype(df[column]):
|
86 |
top_value = df[column].mode().iloc[0] if not df[column].mode().empty else None
|
87 |
|
88 |
summary.append({
|
89 |
+
"column": column,
|
90 |
+
"max": None,
|
91 |
+
"min": None,
|
92 |
+
"count": df[column].count(),
|
93 |
+
"nunique": df[column].nunique(),
|
94 |
+
"dtype": str(df[column].dtype),
|
95 |
+
"top": top_value
|
96 |
})
|
|
|
97 |
summary_df = pd.DataFrame(summary)
|
98 |
return summary_df.reset_index(drop=True)
|
|
|
|
|
99 |
|
100 |
def format_prompt(df):
|
101 |
+
summary = df_summary(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
return prompt_autogenerate.format_prompt(data=df.head().to_json(orient='records'),
|
103 |
+
summary=summary.to_json(orient='records'))
|
104 |
def format_user_prompt(df):
|
105 |
return prompt_user_input.format_prompt(data=df.head().to_json(orient='records'))
|
106 |
|
|
|
117 |
return tests
|
118 |
|
119 |
|
120 |
+
# Get Schema
|
121 |
+
def get_table_schema(table):
|
122 |
+
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
|
123 |
+
ddl_create = result.iloc[0,0]
|
124 |
+
parent_database = result.iloc[0,1]
|
125 |
+
schema_name = result.iloc[0,2]
|
126 |
+
full_path = f"{parent_database}.{schema_name}.{table}"
|
127 |
+
if schema_name != "main":
|
128 |
+
old_path = f"{schema_name}.{table}"
|
129 |
+
else:
|
130 |
+
old_path = table
|
131 |
+
ddl_create = ddl_create.replace(old_path, full_path)
|
132 |
+
return full_path
|
133 |
+
|
134 |
+
def describe(df):
|
135 |
+
|
136 |
+
numerical_info = pd.DataFrame()
|
137 |
+
categorical_info = pd.DataFrame()
|
138 |
+
if len(df.select_dtypes(include=['number']).columns) >= 1:
|
139 |
+
numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
|
140 |
+
numerical_info.rename(columns={'index': 'column'}, inplace=True)
|
141 |
+
if len(df.select_dtypes(include=['object']).columns) >= 1:
|
142 |
+
categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
|
143 |
+
categorical_info.rename(columns={'index': 'column'}, inplace=True)
|
144 |
+
|
145 |
+
return numerical_info, categorical_info
|
146 |
+
|
147 |
def validate_pandera(tests, df):
|
148 |
validation_results = []
|
149 |
|
|
|
163 |
})
|
164 |
return pd.DataFrame(validation_results)
|
165 |
|
166 |
+
def statistics(df):
|
167 |
+
profile = pp.ProfileReport(df)
|
168 |
+
report_dict = profile.get_description()
|
169 |
+
description, alerts = report_dict.table, report_dict.alerts
|
170 |
+
# Statistics
|
171 |
+
mapping = {
|
172 |
+
'n': 'Number of observations',
|
173 |
+
'n_var': 'Number of variables',
|
174 |
+
'n_cells_missing': 'Number of cells missing',
|
175 |
+
'n_vars_with_missing': 'Number of columns with missing data',
|
176 |
+
'n_vars_all_missing': 'Columns with all missing data',
|
177 |
+
'p_cells_missing': 'Missing cells (%)',
|
178 |
+
'n_duplicates': 'Duplicated rows',
|
179 |
+
'p_duplicates': 'Duplicated rows (%)',
|
180 |
+
}
|
181 |
+
|
182 |
+
updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
|
183 |
+
# Add flattened types information
|
184 |
+
if 'Text' in description.get('types', {}):
|
185 |
+
updated_data['Number of text columns'] = description['types']['Text']
|
186 |
+
if 'Categorical' in description.get('types', {}):
|
187 |
+
updated_data['Number of categorical columns'] = description['types']['Categorical']
|
188 |
+
if 'Numeric' in description.get('types', {}):
|
189 |
+
updated_data['Number of numeric columns'] = description['types']['Numeric']
|
190 |
+
if 'DateTime' in description.get('types', {}):
|
191 |
+
updated_data['Number of datetime columns'] = description['types']['DateTime']
|
192 |
+
|
193 |
+
df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
|
194 |
+
df_statistics['Value'] = df_statistics['Value'].astype(int)
|
195 |
+
|
196 |
+
# Alerts
|
197 |
+
alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
|
198 |
+
df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])
|
199 |
+
|
200 |
+
return df_statistics, df_alerts
|
201 |
#---------------------------------------
|
202 |
|
203 |
|
|
|
206 |
def main(table):
|
207 |
schema = get_table_schema(table)
|
208 |
df = get_data_df(schema)
|
209 |
+
df_statistics, df_alerts = statistics(df)
|
210 |
+
describe_num, describe_cat = describe(df)
|
211 |
+
|
212 |
messages = format_prompt(df=df)
|
213 |
tests = run_llm(messages)
|
214 |
print(tests)
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
if isinstance(tests, Exception):
|
217 |
tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
|
218 |
+
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])
|
219 |
|
220 |
tests_df = pd.DataFrame(tests)
|
221 |
tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
|
222 |
pandera_results = validate_pandera(tests, df)
|
223 |
|
224 |
+
return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results
|
225 |
|
226 |
def user_results(table, text_query):
|
227 |
|
|
|
326 |
if __name__ == "__main__":
|
327 |
demo.launch(debug=True)
|
328 |
|
329 |
+
|