File size: 12,521 Bytes
f0ef9a7
d205b24
 
 
 
 
 
 
 
0b98965
d205b24
 
 
 
 
 
542d9ae
d205b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ef9a7
d205b24
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import streamlit as st
from PIL import Image
import pandas as pd
import numpy as np
import math

st.set_page_config(page_title="Numerical Methods Solver", layout="centered")

# Sidebar navigation
image = Image.open("src/ii.jpg")
st.sidebar.image(image, use_container_width=True)

# Sidebar navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Overview", "Tutorial", "Solver"])
if page == "Overview":
    st.image('src/okay-i-will-it.jpg',  width = 600)
    st.title("\U0001F4D8 Numerical Methods Solver")
    st.markdown("""
    #### ๐Ÿ‘‹ Welcome!
    This app helps you understand and solve **ordinary differential equations** (ODEs) using numerical methods.

    ---
    #### ๐Ÿ” What You Can Do:
    - Solve **ordinary differential equations (ODEs)** using methods like Euler, Runge-Kutta, Milne, and more
    - Solve **systems of linear equations** using Gauss Elimination, Gauss-Jordan, Gauss-Seidel, Jacobi, and LU Decomposition
    - Visualize **step-by-step calculations**
    - Input your own function, step size, and initial conditions
    - Get results up to 4โ€“5 decimal places

    ---
    #### ๐Ÿ“Œ Who Is This For?
    - Students studying **Numerical Analysis** or **Linear Algebra**
    - Educators who want a visual teaching tool
    - Anyone learning how numerical methods work under the hood

    ---
    #### ๐Ÿ’ก Supported Methods (So Far)
    **ODE Methods:**
    - Euler's Method (Explicit)
    - Euler's Method (Implicit)
    - Heunโ€™s Method (Improved Euler)
    - Runge-Kutta 4th Order (RK4)
    - Taylor Series Method (1st order)
    - Milne's Predictor-Corrector Method

    **Linear Algebraic Methods:**
    - Gauss Elimination Method
    - Gauss-Jordan Method
    - Gauss-Seidel Iterative Method
    - Jacobi Iteration Method
    - LU Decomposition Method

    ---
    #### ๐Ÿง  How It Works:
    For ODEs:
    - Provide a function of `x` and `y`
    - Set initial values `xโ‚€`, `yโ‚€`, step size `h`, and number of steps `n`

    For Linear Equations:
    - Provide matrix `A` and vector `b` from your system of equations

    The app will:
    - Compute approximated values step by step
    - Display intermediate and final results
    """)

elif page == "Solver":
    st.title("\U0001F9EE Numerical Methods Solver")

    algebraic_methods = [
        "Gauss Elimination Method",
        "Gauss-Jordan Method",
        "Gauss-Seidel Iterative Method",
        "Jacobi Iteration Method",
        "LU Decomposition Method"
    ]
    ode_methods = [
        "Euler (Explicit)",
        "Euler (Implicit)",
        "Heunโ€™s Method (Improved Euler)",
        "Runge-Kutta 4th Order (RK4)",
        "Taylor Series Method",
        "Milne's Predictor-Corrector Method"
    ]

    method_type = st.radio("Choose a Method Category:", ["ODE Methods", "Algebraic Methods"])

    if method_type == "ODE Methods":
        method = st.selectbox("Choose a Numerical Method:", ode_methods)
        col1, col2 = st.columns(2)

        with col1:
            x0 = st.number_input("Initial x (xโ‚€):", value=0.0, format="%.5f")
            h = st.number_input("Step size (h):", value=0.1, format="%.5f")

        with col2:
            f_str = st.text_input("Enter f(x, y):", "x + y")
            y0 = st.number_input("Initial y (yโ‚€):", value=1.0, format="%.5f")
            n = st.number_input("Number of steps:", value=5, step=1)

        st.markdown("### ๐Ÿ”„ Click below to solve")
        compute = st.button("๐Ÿ” Compute Solution")

        if compute:
            try:
                f = lambda x, y: eval(f_str, {"x": x, "y": y, "math": math})
                x_vals = [x0]
                y_vals = [y0]
                x = x0
                y = y0
                results = [{"Step": 0, "x": round(x, 5), "y": round(y, 5)}]

                if method == "Milne's Predictor-Corrector Method":
                    # Generate first 3 points using RK4
                    k1 = h * f(x, y)
                    k2 = h * f(x + h/2, y + k1/2)
                    k3 = h * f(x + h/2, y + k2/2)
                    k4 = h * f(x + h, y + k3)
                    y1 = y + (k1 + 2*k2 + 2*k3 + k4) / 6
                    x1 = x + h

                    k1 = h * f(x1, y1)
                    k2 = h * f(x1 + h/2, y1 + k1/2)
                    k3 = h * f(x1 + h/2, y1 + k2/2)
                    k4 = h * f(x1 + h, y1 + k3)
                    y2 = y1 + (k1 + 2*k2 + 2*k3 + k4) / 6
                    x2 = x1 + h

                    k1 = h * f(x2, y2)
                    k2 = h * f(x2 + h/2, y2 + k1/2)
                    k3 = h * f(x2 + h/2, y2 + k2/2)
                    k4 = h * f(x2 + h, y2 + k3)
                    y3 = y2 + (k1 + 2*k2 + 2*k3 + k4) / 6
                    x3 = x2 + h

                    xs = [x, x1, x2, x3]
                    ys = [y, y1, y2, y3]
                    results = [{"Step": i, "x": round(xs[i], 5), "y": round(ys[i], 5)} for i in range(4)]

                    for i in range(4, int(n) + 1):
                        f_n3 = f(xs[i-3], ys[i-3])
                        f_n2 = f(xs[i-2], ys[i-2])
                        f_n1 = f(xs[i-1], ys[i-1])
                        f_n = f(xs[i-0], ys[i-0])

                        # Predictor
                        y_pred = ys[i-4] + (4*h/3)*(2*f_n2 - f_n1 + 2*f_n)
                        x_new = xs[i-1] + h
                        # Corrector
                        f_pred = f(x_new, y_pred)
                        y_corr = ys[i-2] + (h/3)*(f_n1 + 4*f_n + f_pred)

                        xs.append(x_new)
                        ys.append(y_corr)
                        results.append({"Step": i, "x": round(x_new, 5), "y": round(y_corr, 5)})
                else:
                    for i in range(1, int(n)+1):
                        if method == "Euler (Explicit)":
                            y = y + h * f(x, y)
                            x = x + h
                        elif method == "Euler (Implicit)":
                            y_new = y + h * f(x + h, y)
                            y = y_new
                            x = x + h
                        elif method == "Heunโ€™s Method (Improved Euler)":
                            y_predict = y + h * f(x, y)
                            slope_avg = (f(x, y) + f(x + h, y_predict)) / 2
                            y = y + h * slope_avg
                            x = x + h
                        elif method == "Runge-Kutta 4th Order (RK4)":
                            k1 = h * f(x, y)
                            k2 = h * f(x + h/2, y + k1/2)
                            k3 = h * f(x + h/2, y + k2/2)
                            k4 = h * f(x + h, y + k3)
                            y += (k1 + 2*k2 + 2*k3 + k4) / 6
                            x += h
                        elif method == "Taylor Series Method":
                            y = y + h * f(x, y)
                            x = x + h

                        results.append({"Step": i, "x": round(x, 5), "y": round(y, 5)})
                        x_vals.append(x)
                        y_vals.append(y)

                st.subheader(f"๐Ÿ“Š Results using {method}")
                df = pd.DataFrame(results)
                st.dataframe(df)
            except Exception as e:
                st.error(f"โš ๏ธ Error in function input: {e}")

    elif method_type == "Algebraic Methods":
        method = st.selectbox("Choose a Linear Algebra Method:", algebraic_methods)

        st.write("Enter your coefficient matrix A and RHS vector b (1 equation per line).")
        A_str = st.text_area("Enter matrix A (e.g., 2 1 -1\\n-3 -1 2\\n-2 1 2):", "2 1 -1\n-3 -1 2\n-2 1 2")
        b_str = st.text_area("Enter vector b (e.g., 8\\n-11\\n-3):", "8\n-11\n-3")

        if st.button("๐Ÿ” Solve System"):
            try:
                A = np.array([list(map(float, row.strip().split())) for row in A_str.strip().split('\n')])
                b = np.array([float(num) for num in b_str.strip().split('\n')])
                n = len(b)

                if method == "Gauss Elimination Method":
                    for i in range(n):
                        for j in range(i + 1, n):
                            factor = A[j][i] / A[i][i]
                            A[j] = A[j] - factor * A[i]
                            b[j] = b[j] - factor * b[i]
                    x_sol = np.zeros(n)
                    for i in range(n - 1, -1, -1):
                        x_sol[i] = (b[i] - np.dot(A[i][i + 1:], x_sol[i + 1:])) / A[i][i]
                elif method == "Gauss-Jordan Method":
                    aug = np.hstack((A, b.reshape(-1,1)))
                    for i in range(n):
                        aug[i] = aug[i] / aug[i][i]
                        for j in range(n):
                            if i != j:
                                aug[j] = aug[j] - aug[j][i] * aug[i]
                    x_sol = aug[:, -1]
                elif method == "Gauss-Seidel Iterative Method":
                    x_sol = np.zeros(n)
                    for _ in range(25):
                        for i in range(n):
                            x_sol[i] = (b[i] - np.dot(A[i, :i], x_sol[:i]) - np.dot(A[i, i+1:], x_sol[i+1:])) / A[i, i]
                elif method == "Jacobi Iteration Method":
                    x_sol = np.zeros(n)
                    for _ in range(25):
                        x_new = np.copy(x_sol)
                        for i in range(n):
                            x_new[i] = (b[i] - np.dot(A[i, :i], x_sol[:i]) - np.dot(A[i, i+1:], x_sol[i+1:])) / A[i, i]
                        x_sol = x_new
                elif method == "LU Decomposition Method":
                    L = np.zeros_like(A)
                    U = np.zeros_like(A)
                    for i in range(n):
                        L[i][i] = 1
                        for j in range(i, n):
                            U[i][j] = A[i][j] - sum(L[i][k] * U[k][j] for k in range(i))
                        for j in range(i + 1, n):
                            L[j][i] = (A[j][i] - sum(L[j][k] * U[k][i] for k in range(i))) / U[i][i]
                    y = np.zeros(n)
                    for i in range(n):
                        y[i] = b[i] - np.dot(L[i, :i], y[:i])
                    x_sol = np.zeros(n)
                    for i in range(n - 1, -1, -1):
                        x_sol[i] = (y[i] - np.dot(U[i, i+1:], x_sol[i+1:])) / U[i][i]

                df_result = pd.DataFrame({"Variable": [f"x{i + 1}" for i in range(n)], "Value": x_sol})
                st.success("โœ… System Solved Successfully")
                st.dataframe(df_result)

            except Exception as e:
                st.error(f"โš ๏ธ Error in matrix input: {e}")

elif page == "Tutorial":
    st.title("๐Ÿ“˜ How to Use This Solver")
    st.markdown("")
    st.markdown("---")
    st.markdown("")
    st.markdown("### ๐Ÿ”ข ODE Methods Input")
    st.markdown("""
    These methods solve differential equations like dy/dx = f(x, y).

    **Required Inputs:**
    - `f(x, y)` โ€” The function to solve (e.g., `x + y`, `x * y`, `math.exp(x)`)
    - `Initial xโ‚€` โ€” Starting x-value (e.g., 0)
    - `Initial yโ‚€` โ€” Starting y-value (e.g., 1)
    - `Step size (h)` โ€” E.g., 0.1
    - `Number of steps (n)` โ€” How many iterations (e.g., 5)

    **Function Rules:**
    - You can use basic operators: `+`, `-`, `*`, `/`, `**`
    - You can use math functions like `math.sin(x)`, `math.exp(x)` โ€” include `math.` prefix!
    """)

    st.markdown("")
    st.markdown("---")
    st.markdown("")

    st.markdown("### ๐Ÿงฎ Algebraic Methods Input")
    st.markdown("""
    These methods solve systems like Ax = b.

    **Required Inputs:**
    - **Matrix A** โ€” Coefficients of your equations  
      Example:  
      ```
      2 1 -1  
      -3 -1 2  
      -2 1 2
      ```
    - **Vector b** โ€” Right-hand side values  
      Example:  
      ```
      8  
      -11  
      -3
      ```

    This represents:  
    ```
    2xโ‚ + 1xโ‚‚ - 1xโ‚ƒ = 8  
    -3xโ‚ - 1xโ‚‚ + 2xโ‚ƒ = -11  
    -2xโ‚ + 1xโ‚‚ + 2xโ‚ƒ = -3
    ```

    โœ… Avoid extra spaces. Match the number of rows in A and b.
    """)

    st.markdown("---")
    st.info("Make sure matrix A is square and matches vector b in dimensions for algebraic methods.")
    st.success("You're all set! Head to the Solver tab to try it out.")

st.markdown("---")
st.markdown("<h8 style='text-align: LEFT; font-family:montserrat'>Numerical Method Solver built with โค๏ธ by Datapsalm</h8>", unsafe_allow_html=True)