Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from io import BytesIO | |
# Initialize the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG") | |
model = AutoModelForCausalLM.from_pretrained( | |
"himmeow/vi-gemma-2b-RAG", | |
device_map="auto", | |
torch_dtype=torch.float16 # Use FP16 for faster computation if supported | |
) | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
model.to("cuda") | |
# Streamlit app layout | |
st.set_page_config(page_title="π PDF Query App", page_icon=":book:", layout="wide") | |
st.title("π PDF Query App") | |
st.sidebar.title("Upload File and Query") | |
# Sidebar: File Upload | |
uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type="pdf") | |
# Sidebar: Query Input | |
query = st.sidebar.text_input("Enter your query:") | |
# Sidebar: Submit Button | |
if st.sidebar.button("Submit"): | |
if uploaded_file and query: | |
# Read the PDF file | |
pdf_text = "" | |
with BytesIO(uploaded_file.read()) as file: | |
reader = PdfReader(file) | |
for page in reader.pages: | |
text = page.extract_text() | |
pdf_text += text + "\n" | |
# Define the prompt format for the model | |
prompt = f""" | |
{pdf_text} | |
Please answer the question: {query} | |
""" | |
# Break the text into chunks if it's too long for the model | |
max_input_length = 2048 # Adjust based on the model's max length | |
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_input_length) | |
# Use GPU for input ids if available | |
if torch.cuda.is_available(): | |
input_ids = input_ids.to("cuda") | |
# Generate text using the model | |
outputs = model.generate( | |
**input_ids, | |
max_new_tokens=250, # Reduce the number of tokens generated for faster results | |
no_repeat_ngram_size=3, # Prevent repetition | |
num_beams=2, # Use beam search with fewer beams for faster results | |
) | |
# Decode and display the results | |
response = tokenizer.decode(outputs[0], skip_special |