Spaces:
Runtime error
Runtime error
| import spaces | |
| import requests | |
| import logging | |
| import duckdb | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from bertopic import BERTopic | |
| from bertopic.representation import ( | |
| KeyBERTInspired, | |
| TextGeneration, | |
| ) | |
| from umap import UMAP | |
| import numpy as np | |
| from torch import cuda, bfloat16 | |
| from transformers import ( | |
| BitsAndBytesConfig, | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| pipeline, | |
| ) | |
| from prompts import REPRESENTATION_PROMPT | |
| from hdbscan import HDBSCAN | |
| from sklearn.feature_extraction.text import CountVectorizer | |
| # from cuml.cluster import HDBSCAN | |
| # from cuml.manifold import UMAP | |
| from sentence_transformers import SentenceTransformer | |
| import gradio as gr | |
| logging.basicConfig( | |
| level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
| ) | |
| session = requests.Session() | |
| sentence_model = SentenceTransformer("all-MiniLM-L6-v2") | |
| keybert = KeyBERTInspired() | |
| vectorizer_model = CountVectorizer(stop_words="english") | |
| model_id = "meta-llama/Llama-2-7b-chat-hf" | |
| device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu" | |
| logging.info(device) | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, # 4-bit quantization | |
| bnb_4bit_quant_type="nf4", # Normalized float 4 | |
| bnb_4bit_use_double_quant=True, # Second quantization after the first | |
| bnb_4bit_compute_dtype=bfloat16, # Computation type | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| trust_remote_code=True, | |
| quantization_config=bnb_config, | |
| device_map="auto", | |
| offload_folder="offload", # Offloading part of the model to CPU to save GPU memory | |
| ) | |
| # Enable gradient checkpointing for memory efficiency during backprop? | |
| model.gradient_checkpointing_enable() | |
| generator = pipeline( | |
| model=model, | |
| tokenizer=tokenizer, | |
| task="text-generation", | |
| temperature=0.1, | |
| max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption | |
| repetition_penalty=1.1, | |
| ) | |
| llama2 = TextGeneration(generator, prompt=REPRESENTATION_PROMPT) | |
| representation_model = { | |
| "KeyBERT": keybert, | |
| "Llama2": llama2, | |
| } | |
| # TODO: It should be proporcional to the number of rows | |
| # For small datasets (1-200 rows) it worked fine with 2 neighbors | |
| N_NEIGHBORS = 15 | |
| umap_model = UMAP( | |
| n_neighbors=N_NEIGHBORS, | |
| n_components=5, | |
| min_dist=0.0, | |
| metric="cosine", | |
| random_state=42, | |
| ) | |
| hdbscan_model = HDBSCAN( | |
| min_cluster_size=N_NEIGHBORS, | |
| metric="euclidean", | |
| cluster_selection_method="eom", | |
| prediction_data=True, | |
| ) | |
| reduce_umap_model = UMAP( | |
| n_neighbors=N_NEIGHBORS, | |
| n_components=2, | |
| min_dist=0.0, | |
| metric="cosine", | |
| random_state=42, | |
| ) | |
| def get_parquet_urls(dataset, config, split): | |
| parquet_files = session.get( | |
| f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}", | |
| timeout=20, | |
| ).json() | |
| if "error" in parquet_files: | |
| raise Exception(f"Error fetching parquet files: {parquet_files['error']}") | |
| parquet_urls = [file["url"] for file in parquet_files["parquet_files"]] | |
| logging.debug(f"Parquet files: {parquet_urls}") | |
| return ",".join(f"'{url}'" for url in parquet_urls) | |
| def get_docs_from_parquet(parquet_urls, column, offset, limit): | |
| SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};" | |
| df = duckdb.sql(SQL_QUERY).to_df() | |
| logging.debug(f"Dataframe: {df.head(5)}") | |
| return df[column].tolist() | |
| # TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better? | |
| def calculate_embeddings(docs): | |
| return sentence_model.encode(docs, show_progress_bar=True, batch_size=32) | |
| def fit_model(base_model, docs, embeddings): | |
| new_model = BERTopic( | |
| "english", | |
| # Sub-models | |
| embedding_model=sentence_model, | |
| umap_model=umap_model, | |
| hdbscan_model=hdbscan_model, | |
| representation_model=representation_model, | |
| vectorizer_model=vectorizer_model, | |
| # Hyperparameters | |
| top_n_words=10, | |
| verbose=True, | |
| min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS? | |
| ) | |
| logging.debug("Fitting new model") | |
| new_model.fit(docs, embeddings) | |
| logging.debug("End fitting new model") | |
| if base_model is None: | |
| return new_model, new_model | |
| updated_model = BERTopic.merge_models([base_model, new_model]) | |
| nr_new_topics = len(set(updated_model.topics_)) - len(set(base_model.topics_)) | |
| new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:] | |
| logging.info(f"The following topics are newly found: {new_topics}") | |
| return updated_model, new_model | |
| def generate_topics(dataset, config, split, column, nested_column): | |
| logging.info( | |
| f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}" | |
| ) | |
| parquet_urls = get_parquet_urls(dataset, config, split) | |
| limit = 1_000 | |
| chunk_size = 300 | |
| offset = 0 | |
| base_model = None | |
| all_docs = [] | |
| reduced_embeddings_list = [] | |
| topics_info, topic_plot = None, None | |
| while offset < limit: | |
| docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size) | |
| if not docs: | |
| break | |
| logging.info( | |
| f"----> Processing chunk: {offset=} {chunk_size=} with {len(docs)} docs" | |
| ) | |
| embeddings = calculate_embeddings(docs) | |
| base_model, _ = fit_model(base_model, docs, embeddings) | |
| repr_model_topics = { | |
| key: label[0][0].split("\n")[0] | |
| for key, label in base_model.get_topics(full=True)["Llama2"].items() | |
| } | |
| base_model.set_topic_labels(repr_model_topics) | |
| reduced_embeddings = reduce_umap_model.fit_transform(embeddings) | |
| reduced_embeddings_list.append(reduced_embeddings) | |
| all_docs.extend(docs) | |
| topics_info = base_model.get_topic_info() | |
| topic_plot = base_model.visualize_documents( | |
| all_docs, | |
| reduced_embeddings=np.vstack(reduced_embeddings_list), | |
| custom_labels=True, | |
| ) | |
| logging.info(f"Topics: {repr_model_topics}") | |
| yield topics_info, topic_plot | |
| offset += chunk_size | |
| logging.info("Finished processing all data") | |
| cuda.empty_cache() # Clear cache at the end of each chunk | |
| return topics_info, topic_plot | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 💠 Dataset Topic Discovery 🔭") | |
| gr.Markdown("## Select dataset and text column") | |
| with gr.Accordion("Data details", open=True): | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| dataset_name = HuggingfaceHubSearch( | |
| label="Hub Dataset ID", | |
| placeholder="Search for dataset id on Huggingface", | |
| search_type="dataset", | |
| ) | |
| subset_dropdown = gr.Dropdown(label="Subset", visible=False) | |
| split_dropdown = gr.Dropdown(label="Split", visible=False) | |
| with gr.Accordion("Dataset preview", open=False): | |
| def embed(name, subset, split): | |
| html_code = f""" | |
| <iframe | |
| src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}" | |
| frameborder="0" | |
| width="100%" | |
| height="600px" | |
| ></iframe> | |
| """ | |
| return gr.HTML(value=html_code) | |
| with gr.Row(): | |
| text_column_dropdown = gr.Dropdown(label="Text column name") | |
| nested_text_column_dropdown = gr.Dropdown( | |
| label="Nested text column name", visible=False | |
| ) | |
| generate_button = gr.Button("Generate Topics", variant="primary") | |
| gr.Markdown("## Datamap") | |
| topics_plot = gr.Plot() | |
| with gr.Accordion("Topics Info", open=False): | |
| topics_df = gr.DataFrame(interactive=False, visible=True) | |
| generate_button.click( | |
| generate_topics, | |
| inputs=[ | |
| dataset_name, | |
| subset_dropdown, | |
| split_dropdown, | |
| text_column_dropdown, | |
| nested_text_column_dropdown, | |
| ], | |
| outputs=[topics_df, topics_plot], | |
| ) | |
| def _resolve_dataset_selection( | |
| dataset: str, default_subset: str, default_split: str, text_feature | |
| ): | |
| if "/" not in dataset.strip().strip("/"): | |
| return { | |
| subset_dropdown: gr.Dropdown(visible=False), | |
| split_dropdown: gr.Dropdown(visible=False), | |
| text_column_dropdown: gr.Dropdown(label="Text column name"), | |
| nested_text_column_dropdown: gr.Dropdown(visible=False), | |
| } | |
| info_resp = session.get( | |
| f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20 | |
| ).json() | |
| if "error" in info_resp: | |
| return { | |
| subset_dropdown: gr.Dropdown(visible=False), | |
| split_dropdown: gr.Dropdown(visible=False), | |
| text_column_dropdown: gr.Dropdown(label="Text column name"), | |
| nested_text_column_dropdown: gr.Dropdown(visible=False), | |
| } | |
| subsets: list[str] = list(info_resp["dataset_info"]) | |
| subset = default_subset if default_subset in subsets else subsets[0] | |
| splits: list[str] = list(info_resp["dataset_info"][subset]["splits"]) | |
| split = default_split if default_split in splits else splits[0] | |
| features = info_resp["dataset_info"][subset]["features"] | |
| def _is_string_feature(feature): | |
| return isinstance(feature, dict) and feature.get("dtype") == "string" | |
| text_features = [ | |
| feature_name | |
| for feature_name, feature in features.items() | |
| if _is_string_feature(feature) | |
| ] | |
| nested_features = [ | |
| feature_name | |
| for feature_name, feature in features.items() | |
| if isinstance(feature, dict) | |
| and isinstance(next(iter(feature.values())), dict) | |
| ] | |
| nested_text_features = [ | |
| feature_name | |
| for feature_name in nested_features | |
| if any( | |
| _is_string_feature(nested_feature) | |
| for nested_feature in features[feature_name].values() | |
| ) | |
| ] | |
| if not text_feature: | |
| return { | |
| subset_dropdown: gr.Dropdown( | |
| value=subset, choices=subsets, visible=len(subsets) > 1 | |
| ), | |
| split_dropdown: gr.Dropdown( | |
| value=split, choices=splits, visible=len(splits) > 1 | |
| ), | |
| text_column_dropdown: gr.Dropdown( | |
| choices=text_features + nested_text_features, | |
| label="Text column name", | |
| ), | |
| nested_text_column_dropdown: gr.Dropdown(visible=False), | |
| } | |
| if text_feature in nested_text_features: | |
| nested_keys = [ | |
| feature_name | |
| for feature_name, feature in features[text_feature].items() | |
| if _is_string_feature(feature) | |
| ] | |
| return { | |
| subset_dropdown: gr.Dropdown( | |
| value=subset, choices=subsets, visible=len(subsets) > 1 | |
| ), | |
| split_dropdown: gr.Dropdown( | |
| value=split, choices=splits, visible=len(splits) > 1 | |
| ), | |
| text_column_dropdown: gr.Dropdown( | |
| choices=text_features + nested_text_features, | |
| label="Text column name", | |
| ), | |
| nested_text_column_dropdown: gr.Dropdown( | |
| value=nested_keys[0], | |
| choices=nested_keys, | |
| label="Nested text column name", | |
| visible=True, | |
| ), | |
| } | |
| return { | |
| subset_dropdown: gr.Dropdown( | |
| value=subset, choices=subsets, visible=len(subsets) > 1 | |
| ), | |
| split_dropdown: gr.Dropdown( | |
| value=split, choices=splits, visible=len(splits) > 1 | |
| ), | |
| text_column_dropdown: gr.Dropdown( | |
| choices=text_features + nested_text_features, label="Text column name" | |
| ), | |
| nested_text_column_dropdown: gr.Dropdown(visible=False), | |
| } | |
| def show_input_from_subset_dropdown(dataset: str) -> dict: | |
| return _resolve_dataset_selection( | |
| dataset, default_subset="default", default_split="train", text_feature=None | |
| ) | |
| def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict: | |
| return _resolve_dataset_selection( | |
| dataset, default_subset=subset, default_split="train", text_feature=None | |
| ) | |
| def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict: | |
| return _resolve_dataset_selection( | |
| dataset, default_subset=subset, default_split=split, text_feature=None | |
| ) | |
| def show_input_from_text_column_dropdown( | |
| dataset: str, subset: str, split: str, text_column | |
| ) -> dict: | |
| return _resolve_dataset_selection( | |
| dataset, | |
| default_subset=subset, | |
| default_split=split, | |
| text_feature=text_column, | |
| ) | |
| demo.launch() | |