davanstrien's picture
davanstrien HF Staff
Update app.py
da5ada1 verified
raw
history blame
5.03 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import ModelCard, DatasetCard, model_info, dataset_info
import logging
from typing import Tuple, Literal
import functools
import spaces
from cachetools import TTLCache
from cachetools.func import ttl_cache
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
MODEL_NAME = "davanstrien/Smol-Hub-tldr"
model = None
tokenizer = None
device = None
CACHE_TTL = 6 * 60 * 60 # 6 hours in seconds
CACHE_MAXSIZE = 100
def load_model():
global model, tokenizer, device
logger.info("Loading model and tokenizer...")
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model = model.to(device)
model.eval()
return True
except Exception as e:
logger.error(f"Failed to load model: {e}")
return False
@functools.lru_cache(maxsize=100)
def get_card_info(hub_id: str) -> Tuple[str, str]:
"""Get card information from a Hugging Face hub_id."""
try:
info = model_info(hub_id)
card = ModelCard.load(hub_id)
return "model", card.text
except Exception as e:
logger.error(f"Error fetching model card for {hub_id}: {e}")
try:
info = dataset_info(hub_id)
card = DatasetCard.load(hub_id)
return "dataset", card.text
except Exception as e:
logger.error(f"Error fetching dataset card for {hub_id}: {e}")
raise ValueError(f"Could not find model or dataset with id {hub_id}")
@spaces.GPU
def _generate_summary_gpu(card_text: str, card_type: str) -> str:
"""Internal function that runs on GPU."""
# Determine prefix based on card type
prefix = "<MODEL_CARD>" if card_type == "model" else "<DATASET_CARD>"
# Format input according to the chat template
messages = [{"role": "user", "content": f"{prefix}{card_text}"}]
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
inputs = inputs.to(device)
# Generate with optimized settings
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=60,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=0.4,
do_sample=True,
use_cache=True,
)
# Extract and clean up the summary
input_length = inputs.shape[1]
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=False)
# Extract just the summary part
try:
summary = response.split("<CARD_SUMMARY>")[-1].split("</CARD_SUMMARY>")[0].strip()
except IndexError:
summary = response.strip()
return summary
@ttl_cache(maxsize=CACHE_MAXSIZE, ttl=CACHE_TTL)
def generate_summary(card_text: str, card_type: str) -> str:
"""Cached wrapper for generate_summary with TTL."""
return _generate_summary_gpu(card_text, card_type)
def summarize(hub_id: str = "", card_type: str = "model") -> Tuple[str, str]:
"""Interface function for Gradio. Returns both text and JSON formats."""
try:
if hub_id:
# Fetch and validate card type
inferred_type, card_text = get_card_info(hub_id)
if card_type and card_type != inferred_type:
error_msg = f"Error: Provided card_type '{card_type}' doesn't match inferred type '{inferred_type}'"
return error_msg, f'{{"error": "{error_msg}"}}'
card_type = inferred_type
else:
error_msg = "Error: Hub ID must be provided"
return error_msg, f'{{"error": "{error_msg}"}}'
# Use the cached wrapper
summary = generate_summary(card_text, card_type)
json_output = f'{{"summary": "{summary}", "type": "{card_type}", "hub_id": "{hub_id}"}}'
return summary, json_output
except Exception as e:
error_msg = str(e)
return f"Error: {error_msg}", f'{{"error": "{error_msg}"}}'
def create_interface():
interface = gr.Interface(
fn=summarize,
inputs=[
gr.Textbox(label="Hub ID", placeholder="e.g., huggingface/llama-7b"),
gr.Radio(choices=["model", "dataset"], label="Card Type", value="model"),
],
outputs=[
gr.Textbox(label="Summary"),
gr.JSON(label="JSON Output")
],
title="Hugging Face Hub TLDR Generator",
description="Generate concise summaries of model and dataset cards from the Hugging Face Hub.",
)
return interface
if __name__ == "__main__":
if load_model():
interface = create_interface()
interface.launch()
else:
print("Failed to load model. Please check the logs for details.")