davanstrien HF Staff commited on
Commit
3a5e47f
·
1 Parent(s): af17c2f

formatting

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -130,13 +130,15 @@ def predict_subset(model_id, token):
130
 
131
 
132
  with gr.Blocks() as demo:
133
- gr.Markdown("""# ARCH Image Dataset Explorer
 
134
  This [Gradio](https://gradio.app/) [Space](https://huggingface.co/spaces/launch) allows you to explore an image dataset exported from ARCH: Archive Research Compute Hub from the [Internet Archive](https://archive.org/).
135
  Each tab allows you to explore the dataset in a slightly different way by making use of Machine Learning models and tools from the Hugging Face ecosystem.
136
- """)
 
137
  with gr.Tab("Random Image Gallery"):
138
  gr.Markdown(
139
- """## Random image gallery
140
  This tab allows you to explore images in your ARCH collection. You can refresh the images by clicking the refresh button.
141
  **Please note** not all images will be displayed as some images may not available via the original URLS anymore."""
142
  )
@@ -145,7 +147,7 @@ with gr.Blocks() as demo:
145
  button.click(return_random_sample, [], [gallery])
146
  with gr.Tab("Image Search"):
147
  gr.Markdown(
148
- """## Image search
149
  You can search for images by entering a search term and clicking the search button.
150
  You can also change the number of images to be returned.
151
  This model uses the [clip-ViT-B-16](https://huggingface.co/sentence-transformers/clip-ViT-B-16) model to embed your images and search term"""
@@ -162,7 +164,7 @@ with gr.Blocks() as demo:
162
 
163
  with gr.Tab("Image Classification Model Tester"):
164
  gr.Markdown(
165
- """## Image classification model tester
166
  You can use this to test out [image classification models](https://huggingface.co/models?pipeline_tag=image-classification) on the Hugging Face Hub:
167
  - To use this tab you will need to have a Hugging Face account and a valid token.
168
  - You can get a token from your [Hugging Face account page](https://huggingface.co/settings/token).
@@ -173,21 +175,25 @@ with gr.Blocks() as demo:
173
  )
174
  token = gr.Textbox(label="token", type="password")
175
 
176
- model_id = gr.Textbox(label="model_id", value="davanstrien/autotrain-wikiart-sample2-42615108993")
 
 
177
  button = gr.Button("predict")
178
  gr.Markdown("## Results")
179
  plot = gr.BarPlot(x="labels", y="freqs", width=600, height=400, vertical=False)
180
  gallery = gr.Gallery()
181
  button.click(predict_subset, [model_id, token], [gallery, plot])
182
  with gr.Tab("Export to Label Studio format"):
183
- gr.Markdown("""
 
184
  ## Export to Label Studio format
185
  <img align=left src="https://warehouse-camo.ingress.cmh1.psfhosted.org/ba8de1e22c982bbfc28201dcc953ca15e92a399c/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f686561727465786c6162732f6c6162656c2d73747564696f2f6d61737465722f696d616765732f6c735f6769746875625f6865616465722e706e67">
186
  This will export the current dataset to a csv file which can be imported into [Label Studio](https://labelstud.io/). You can then import this into Label Studio to label your images by hand.
187
- You can run Label Studio using Hugging Face Spaces using this [Spaces template](https://huggingface.co/new-space?template=LabelStudio/LabelStudio)""")
 
188
 
189
  dataset2 = copy.deepcopy(dataset)
190
- dataset2 = dataset2.remove_columns('image')
191
  dataset2 = dataset2.rename_column("url", "image")
192
  csv = dataset2.to_csv("label_studio.csv")
193
  csv_file = gr.File("label_studio.csv")
 
130
 
131
 
132
  with gr.Blocks() as demo:
133
+ gr.Markdown(
134
+ """# ARCH Image Dataset Explorer
135
  This [Gradio](https://gradio.app/) [Space](https://huggingface.co/spaces/launch) allows you to explore an image dataset exported from ARCH: Archive Research Compute Hub from the [Internet Archive](https://archive.org/).
136
  Each tab allows you to explore the dataset in a slightly different way by making use of Machine Learning models and tools from the Hugging Face ecosystem.
137
+ """
138
+ )
139
  with gr.Tab("Random Image Gallery"):
140
  gr.Markdown(
141
+ """## Random image gallery
142
  This tab allows you to explore images in your ARCH collection. You can refresh the images by clicking the refresh button.
143
  **Please note** not all images will be displayed as some images may not available via the original URLS anymore."""
144
  )
 
147
  button.click(return_random_sample, [], [gallery])
148
  with gr.Tab("Image Search"):
149
  gr.Markdown(
150
+ """## Image search
151
  You can search for images by entering a search term and clicking the search button.
152
  You can also change the number of images to be returned.
153
  This model uses the [clip-ViT-B-16](https://huggingface.co/sentence-transformers/clip-ViT-B-16) model to embed your images and search term"""
 
164
 
165
  with gr.Tab("Image Classification Model Tester"):
166
  gr.Markdown(
167
+ """## Image classification model tester
168
  You can use this to test out [image classification models](https://huggingface.co/models?pipeline_tag=image-classification) on the Hugging Face Hub:
169
  - To use this tab you will need to have a Hugging Face account and a valid token.
170
  - You can get a token from your [Hugging Face account page](https://huggingface.co/settings/token).
 
175
  )
176
  token = gr.Textbox(label="token", type="password")
177
 
178
+ model_id = gr.Textbox(
179
+ label="model_id", value="davanstrien/autotrain-wikiart-sample2-42615108993"
180
+ )
181
  button = gr.Button("predict")
182
  gr.Markdown("## Results")
183
  plot = gr.BarPlot(x="labels", y="freqs", width=600, height=400, vertical=False)
184
  gallery = gr.Gallery()
185
  button.click(predict_subset, [model_id, token], [gallery, plot])
186
  with gr.Tab("Export to Label Studio format"):
187
+ gr.Markdown(
188
+ """
189
  ## Export to Label Studio format
190
  <img align=left src="https://warehouse-camo.ingress.cmh1.psfhosted.org/ba8de1e22c982bbfc28201dcc953ca15e92a399c/68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f686561727465786c6162732f6c6162656c2d73747564696f2f6d61737465722f696d616765732f6c735f6769746875625f6865616465722e706e67">
191
  This will export the current dataset to a csv file which can be imported into [Label Studio](https://labelstud.io/). You can then import this into Label Studio to label your images by hand.
192
+ You can run Label Studio using Hugging Face Spaces using this [Spaces template](https://huggingface.co/new-space?template=LabelStudio/LabelStudio)"""
193
+ )
194
 
195
  dataset2 = copy.deepcopy(dataset)
196
+ dataset2 = dataset2.remove_columns("image")
197
  dataset2 = dataset2.rename_column("url", "image")
198
  csv = dataset2.to_csv("label_studio.csv")
199
  csv_file = gr.File("label_studio.csv")