import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load model and tokenizer model = GPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") def get_next_token_probs(text): # Handle empty input if not text.strip(): return ["No input text"] * 5 # Tokenize input input_ids = tokenizer.encode(text, return_tensors="pt") # Get predictions with torch.no_grad(): outputs = model(input_ids) logits = outputs.logits # Get probabilities for next token next_token_logits = logits[0, -1, :] next_token_probs = torch.softmax(next_token_logits, dim=0) # Get top-5 tokens and their probabilities topk_probs, topk_indices = torch.topk(next_token_probs, 5) topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices] # Format the results as strings formatted_results = [] for i, (token, prob) in enumerate(zip(topk_tokens, topk_probs)): # Format probability as percentage with 1 decimal place prob_percent = f"{prob.item()*100:.1f}%" # Clean up token display (replace space with visible space symbol) display_token = token.replace(" ", "␣") # Format the output string formatted_results.append(f"{i+1}. \"{display_token}\" ({prob_percent})") return formatted_results # Create minimal interface with simpler components with gr.Blocks(css="footer {display: none}") as demo: gr.Markdown("### GPT-2 Next Token Predictor") # Input textbox input_text = gr.Textbox( label="Text Input", placeholder="Type here and watch predictions update...", value="The weather tomorrow will be" ) # Simple header for results gr.Markdown("##### Most likely next tokens:") # Individual output textboxes for each token token1 = gr.Markdown() token2 = gr.Markdown() token3 = gr.Markdown() token4 = gr.Markdown() token5 = gr.Markdown() token_outputs = [token1, token2, token3, token4, token5] # Set up the live update input_text.change( fn=get_next_token_probs, inputs=input_text, outputs=token_outputs ) # Initialize with default text demo.load( fn=get_next_token_probs, inputs=input_text, outputs=token_outputs ) # Launch the app demo.launch()