Spaces:
Runtime error
Runtime error
Commit
·
c4fe3e2
1
Parent(s):
0161690
Upload 4 files
Browse files- app.py +102 -0
- notebooks_on_the_hub.ipynb +1966 -0
- requirements.in +8 -0
- requirements.txt +224 -0
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from huggingface_hub import list_models, list_spaces
|
4 |
+
from pathlib import Path
|
5 |
+
from toolz import concat
|
6 |
+
from datasets import Dataset
|
7 |
+
import polars as pl
|
8 |
+
from datetime import date
|
9 |
+
from datasets import load_dataset
|
10 |
+
import plotly.express as px
|
11 |
+
import os
|
12 |
+
|
13 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
assert HF_TOKEN
|
15 |
+
|
16 |
+
|
17 |
+
def yield_models():
|
18 |
+
for model in iter(list_models(full=True)):
|
19 |
+
yield "model", model
|
20 |
+
|
21 |
+
|
22 |
+
def yield_spaces():
|
23 |
+
for space in iter(list_spaces(full=True)):
|
24 |
+
yield "space", space
|
25 |
+
|
26 |
+
|
27 |
+
def yield_notebooks():
|
28 |
+
for repo_type, repo in concat([yield_models(), yield_spaces()]):
|
29 |
+
files = (f.rfilename for f in repo.siblings)
|
30 |
+
if jupyter_notebook := [f for f in files if Path(f).suffix == ".ipynb"]:
|
31 |
+
yield {
|
32 |
+
"date": date.today(),
|
33 |
+
"repo_type": repo_type,
|
34 |
+
"repo_id": repo.id,
|
35 |
+
"repo_notebook_count": len(jupyter_notebook),
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def update_stats():
|
40 |
+
df = pl.LazyFrame(yield_notebooks())
|
41 |
+
|
42 |
+
df = (
|
43 |
+
df.with_columns(pl.col("repo_id").str.split_exact("/", 1))
|
44 |
+
.unnest("repo_id")
|
45 |
+
.rename({"field_0": "user", "field_1": "repo_id"})
|
46 |
+
)
|
47 |
+
by_user_count = (
|
48 |
+
df.groupby("user")
|
49 |
+
.agg(pl.col("repo_notebook_count").sum())
|
50 |
+
.sort("repo_notebook_count", descending=True)
|
51 |
+
.collect()
|
52 |
+
)
|
53 |
+
|
54 |
+
by_user_count.mean().select(
|
55 |
+
pl.col("repo_notebook_count").alias("mean notebooks per user")
|
56 |
+
)
|
57 |
+
|
58 |
+
ds = Dataset(by_user_count.to_arrow())
|
59 |
+
|
60 |
+
ds.push_to_hub("davanstrien/notebooks_by_user", token=HF_TOKEN)
|
61 |
+
|
62 |
+
grouped = df.groupby("repo_type").agg(pl.col("repo_notebook_count").sum())
|
63 |
+
final_df = grouped.with_columns(pl.lit(date.today()).alias("date")).collect()
|
64 |
+
previous_df = pl.DataFrame(
|
65 |
+
load_dataset("davanstrien/notebooks_by_repo_type", split="train").data.table
|
66 |
+
)
|
67 |
+
final_df = pl.concat([previous_df, final_df]).unique()
|
68 |
+
spaces = final_df.filter(pl.col("repo_type") == "space").unique(
|
69 |
+
subset=["date"], keep="last"
|
70 |
+
)
|
71 |
+
models = final_df.filter(pl.col("repo_type") == "model").unique(
|
72 |
+
subset=["date"], keep="last"
|
73 |
+
)
|
74 |
+
final_df = pl.concat([spaces, models]).unique()
|
75 |
+
Dataset(final_df.to_arrow()).push_to_hub(
|
76 |
+
"davanstrien/notebooks_by_repo_type", token=HF_TOKEN
|
77 |
+
)
|
78 |
+
|
79 |
+
final_df = final_df.sort("date")
|
80 |
+
pandas_df = final_df.to_pandas()
|
81 |
+
# final_df.to_pandas().set_index("date", drop=True).sort_index()
|
82 |
+
return pandas_df, final_df
|
83 |
+
|
84 |
+
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
gr.Markdown("# Notebooks on the Hub (updated daily)")
|
87 |
+
pandas_df, final_df = update_stats()
|
88 |
+
gr.Markdown("## Notebooks on the Hub over time")
|
89 |
+
gr.Plot(px.line(pandas_df, x="date", y="repo_notebook_count", color="repo_type"))
|
90 |
+
gr.Markdown("## Notebooks on the Hub (total by date)")
|
91 |
+
gr.DataFrame(
|
92 |
+
final_df.select(pl.col(["date", "repo_notebook_count"]))
|
93 |
+
.groupby("date")
|
94 |
+
.sum()
|
95 |
+
.sort("date")
|
96 |
+
.to_pandas()
|
97 |
+
)
|
98 |
+
gr.Markdown("## Notebooks on the Hub raw data")
|
99 |
+
gr.DataFrame(pandas_df)
|
100 |
+
|
101 |
+
|
102 |
+
demo.launch(debug=True)
|
notebooks_on_the_hub.ipynb
ADDED
@@ -0,0 +1,1966 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 67,
|
6 |
+
"metadata": {
|
7 |
+
"id": "iNgLgZ27Dlq6"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"from huggingface_hub import list_models, list_spaces\n",
|
12 |
+
"from pathlib import Path\n",
|
13 |
+
"from toolz import concat\n",
|
14 |
+
"from datasets import Dataset\n",
|
15 |
+
"import polars as pl\n",
|
16 |
+
"from datetime import date\n",
|
17 |
+
"from datetime import date, timedelta\n",
|
18 |
+
"from datasets import load_dataset\n",
|
19 |
+
"import plotly.express as px\n",
|
20 |
+
"import os"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"HF_TOKEN = os.getenv(\"HF_TOKEN\")"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 23,
|
35 |
+
"metadata": {
|
36 |
+
"id": "mBMDThV4FA3m"
|
37 |
+
},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"def yield_models():\n",
|
41 |
+
" for model in iter(list_models(full=True)):\n",
|
42 |
+
" yield \"model\", model"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 24,
|
48 |
+
"metadata": {
|
49 |
+
"id": "hDqiwFD3uTR8"
|
50 |
+
},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"def yield_spaces():\n",
|
54 |
+
" for space in iter(list_spaces(full=True)):\n",
|
55 |
+
" yield \"space\", space"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 25,
|
61 |
+
"metadata": {
|
62 |
+
"id": "mZEhftoNFHGN"
|
63 |
+
},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"def yield_notebooks():\n",
|
67 |
+
" for repo_type, repo in concat([yield_models(), yield_spaces()]):\n",
|
68 |
+
" files = (f.rfilename for f in repo.siblings)\n",
|
69 |
+
" if jupyter_notebook := [f for f in files if Path(f).suffix == \".ipynb\"]:\n",
|
70 |
+
" yield {\n",
|
71 |
+
" \"date\": date.today(),\n",
|
72 |
+
" \"repo_type\": repo_type,\n",
|
73 |
+
" \"repo_id\": repo.id,\n",
|
74 |
+
" \"repo_notebook_count\": len(jupyter_notebook),\n",
|
75 |
+
" }"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 26,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"df = pl.LazyFrame(yield_notebooks())"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 27,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"df = (\n",
|
94 |
+
" df.with_columns(pl.col(\"repo_id\").str.split_exact(\"/\", 1))\n",
|
95 |
+
" .unnest(\"repo_id\")\n",
|
96 |
+
" .rename({\"field_0\": \"user\", \"field_1\": \"repo_id\"})\n",
|
97 |
+
")"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 28,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"by_user_count = (\n",
|
107 |
+
" df.groupby(\"user\")\n",
|
108 |
+
" .agg(pl.col(\"repo_notebook_count\").sum())\n",
|
109 |
+
" .sort(\"repo_notebook_count\", descending=True)\n",
|
110 |
+
" .collect()\n",
|
111 |
+
")"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 29,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/html": [
|
122 |
+
"<div><style>\n",
|
123 |
+
".dataframe > thead > tr > th,\n",
|
124 |
+
".dataframe > tbody > tr > td {\n",
|
125 |
+
" text-align: right;\n",
|
126 |
+
"}\n",
|
127 |
+
"</style>\n",
|
128 |
+
"<small>shape: (1540, 2)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>user</th><th>repo_notebook_count</th></tr><tr><td>str</td><td>i64</td></tr></thead><tbody><tr><td>"gradio-pr-depl…</td><td>1798</td></tr><tr><td>"gradio"</td><td>414</td></tr><tr><td>"sgoodfriend"</td><td>240</td></tr><tr><td>"merve"</td><td>63</td></tr><tr><td>"chrisjay"</td><td>62</td></tr><tr><td>"infinitejoy"</td><td>32</td></tr><tr><td>"fabricius"</td><td>29</td></tr><tr><td>"aammari"</td><td>26</td></tr><tr><td>"flax-community…</td><td>24</td></tr><tr><td>"rajesh1729"</td><td>24</td></tr><tr><td>"gabri14el"</td><td>23</td></tr><tr><td>"srush"</td><td>23</td></tr><tr><td>…</td><td>…</td></tr><tr><td>"fredbrito"</td><td>1</td></tr><tr><td>"JimmyLee08"</td><td>1</td></tr><tr><td>"BenjaminFraser…</td><td>1</td></tr><tr><td>"MRamzam"</td><td>1</td></tr><tr><td>"Deepak107"</td><td>1</td></tr><tr><td>"ozyman"</td><td>1</td></tr><tr><td>"ELIA"</td><td>1</td></tr><tr><td>"zaidmukaddam"</td><td>1</td></tr><tr><td>"Jack003"</td><td>1</td></tr><tr><td>"SiddhantOjha"</td><td>1</td></tr><tr><td>"lowrollr"</td><td>1</td></tr><tr><td>"edwardpraveen"</td><td>1</td></tr></tbody></table></div>"
|
129 |
+
],
|
130 |
+
"text/plain": [
|
131 |
+
"shape: (1540, 2)\n",
|
132 |
+
"┌───────────────────┬─────────────────────┐\n",
|
133 |
+
"│ user ┆ repo_notebook_count │\n",
|
134 |
+
"│ --- ┆ --- │\n",
|
135 |
+
"│ str ┆ i64 │\n",
|
136 |
+
"╞═══════════════════╪═══════════════��═════╡\n",
|
137 |
+
"│ gradio-pr-deploys ┆ 1798 │\n",
|
138 |
+
"│ gradio ┆ 414 │\n",
|
139 |
+
"│ sgoodfriend ┆ 240 │\n",
|
140 |
+
"│ merve ┆ 63 │\n",
|
141 |
+
"│ … ┆ … │\n",
|
142 |
+
"│ Jack003 ┆ 1 │\n",
|
143 |
+
"│ SiddhantOjha ┆ 1 │\n",
|
144 |
+
"│ lowrollr ┆ 1 │\n",
|
145 |
+
"│ edwardpraveen ┆ 1 │\n",
|
146 |
+
"└───────────────────┴─────────────────────┘"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
"execution_count": 29,
|
150 |
+
"metadata": {},
|
151 |
+
"output_type": "execute_result"
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"by_user_count"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": 30,
|
161 |
+
"metadata": {},
|
162 |
+
"outputs": [
|
163 |
+
{
|
164 |
+
"data": {
|
165 |
+
"text/html": [
|
166 |
+
"<div><style>\n",
|
167 |
+
".dataframe > thead > tr > th,\n",
|
168 |
+
".dataframe > tbody > tr > td {\n",
|
169 |
+
" text-align: right;\n",
|
170 |
+
"}\n",
|
171 |
+
"</style>\n",
|
172 |
+
"<small>shape: (7, 3)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>describe</th><th>user</th><th>repo_notebook_count</th></tr><tr><td>str</td><td>str</td><td>f64</td></tr></thead><tbody><tr><td>"count"</td><td>"1540"</td><td>1540.0</td></tr><tr><td>"null_count"</td><td>"0"</td><td>0.0</td></tr><tr><td>"mean"</td><td>null</td><td>3.787013</td></tr><tr><td>"std"</td><td>null</td><td>47.455407</td></tr><tr><td>"min"</td><td>"007aneesh"</td><td>1.0</td></tr><tr><td>"max"</td><td>"zinoubm"</td><td>1798.0</td></tr><tr><td>"median"</td><td>null</td><td>1.0</td></tr></tbody></table></div>"
|
173 |
+
],
|
174 |
+
"text/plain": [
|
175 |
+
"shape: (7, 3)\n",
|
176 |
+
"┌────────────┬───────────┬─────────────────────┐\n",
|
177 |
+
"│ describe ┆ user ┆ repo_notebook_count │\n",
|
178 |
+
"│ --- ┆ --- ┆ --- │\n",
|
179 |
+
"│ str ┆ str ┆ f64 │\n",
|
180 |
+
"╞════════════╪═══════════╪═════════════════════╡\n",
|
181 |
+
"│ count ┆ 1540 ┆ 1540.0 │\n",
|
182 |
+
"│ null_count ┆ 0 ┆ 0.0 │\n",
|
183 |
+
"│ mean ┆ null ┆ 3.787013 │\n",
|
184 |
+
"│ std ┆ null ┆ 47.455407 │\n",
|
185 |
+
"│ min ┆ 007aneesh ┆ 1.0 │\n",
|
186 |
+
"│ max ┆ zinoubm ┆ 1798.0 │\n",
|
187 |
+
"│ median ┆ null ┆ 1.0 │\n",
|
188 |
+
"└────────────┴───────────┴─────────────────────┘"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
"execution_count": 30,
|
192 |
+
"metadata": {},
|
193 |
+
"output_type": "execute_result"
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"source": [
|
197 |
+
"by_user_count.describe()"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 31,
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"data": {
|
207 |
+
"text/html": [
|
208 |
+
"<div><style>\n",
|
209 |
+
".dataframe > thead > tr > th,\n",
|
210 |
+
".dataframe > tbody > tr > td {\n",
|
211 |
+
" text-align: right;\n",
|
212 |
+
"}\n",
|
213 |
+
"</style>\n",
|
214 |
+
"<small>shape: (1, 1)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>mean notebooks per user</th></tr><tr><td>f64</td></tr></thead><tbody><tr><td>3.787013</td></tr></tbody></table></div>"
|
215 |
+
],
|
216 |
+
"text/plain": [
|
217 |
+
"shape: (1, 1)\n",
|
218 |
+
"┌──────────────────────────┐\n",
|
219 |
+
"│ mean notebooks per user │\n",
|
220 |
+
"│ --- │\n",
|
221 |
+
"│ f64 │\n",
|
222 |
+
"╞══════════════════════════╡\n",
|
223 |
+
"│ 3.787013 │\n",
|
224 |
+
"└──────────────────────────┘"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
"execution_count": 31,
|
228 |
+
"metadata": {},
|
229 |
+
"output_type": "execute_result"
|
230 |
+
}
|
231 |
+
],
|
232 |
+
"source": [
|
233 |
+
"by_user_count.mean().select(\n",
|
234 |
+
" pl.col(\"repo_notebook_count\").alias(\"mean notebooks per user\")\n",
|
235 |
+
")"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 32,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"data": {
|
245 |
+
"text/plain": [
|
246 |
+
"Dataset({\n",
|
247 |
+
" features: ['user', 'repo_notebook_count'],\n",
|
248 |
+
" num_rows: 1540\n",
|
249 |
+
"})"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
"execution_count": 32,
|
253 |
+
"metadata": {},
|
254 |
+
"output_type": "execute_result"
|
255 |
+
}
|
256 |
+
],
|
257 |
+
"source": [
|
258 |
+
"ds = Dataset(by_user_count.to_arrow())\n",
|
259 |
+
"ds"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 33,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"name": "stderr",
|
269 |
+
"output_type": "stream",
|
270 |
+
"text": [
|
271 |
+
"Creating parquet from Arrow format: 100%|██████████| 2/2 [00:00<00:00, 617.08ba/s]\n",
|
272 |
+
"Upload 1 LFS files: 100%|██████████| 1/1 [00:00<00:00, 1.05it/s]\n",
|
273 |
+
"Pushing dataset shards to the dataset hub: 100%|██████████| 1/1 [00:02<00:00, 2.39s/it]\n",
|
274 |
+
"Deleting unused files from dataset repository: 100%|██████████| 1/1 [00:00<00:00, 2.01it/s]\n",
|
275 |
+
"Downloading metadata: 100%|██████████| 406/406 [00:00<00:00, 126kB/s]\n",
|
276 |
+
"Updating downloaded metadata with the new split.\n"
|
277 |
+
]
|
278 |
+
}
|
279 |
+
],
|
280 |
+
"source": [
|
281 |
+
"ds.push_to_hub(\"davanstrien/notebooks_by_user\", token=HF_TOKEN)"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "code",
|
286 |
+
"execution_count": 34,
|
287 |
+
"metadata": {
|
288 |
+
"id": "h6AaHRSCV397"
|
289 |
+
},
|
290 |
+
"outputs": [],
|
291 |
+
"source": [
|
292 |
+
"grouped = df.groupby(\"repo_type\").agg(pl.col(\"repo_notebook_count\").sum())"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 35,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"text/html": [
|
303 |
+
"<div><style>\n",
|
304 |
+
".dataframe > thead > tr > th,\n",
|
305 |
+
".dataframe > tbody > tr > td {\n",
|
306 |
+
" text-align: right;\n",
|
307 |
+
"}\n",
|
308 |
+
"</style>\n",
|
309 |
+
"<small>shape: (2, 3)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>repo_type</th><th>repo_notebook_count</th><th>date</th></tr><tr><td>str</td><td>i64</td><td>date</td></tr></thead><tbody><tr><td>"space"</td><td>4443</td><td>2023-03-30</td></tr><tr><td>"model"</td><td>1389</td><td>2023-03-30</td></tr></tbody></table></div>"
|
310 |
+
],
|
311 |
+
"text/plain": [
|
312 |
+
"shape: (2, 3)\n",
|
313 |
+
"┌───────────┬─────────────────────┬────────────┐\n",
|
314 |
+
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
|
315 |
+
"│ --- ┆ --- ┆ --- │\n",
|
316 |
+
"│ str ┆ i64 ┆ date │\n",
|
317 |
+
"╞═══════════╪═════════════════════╪════════════╡\n",
|
318 |
+
"│ space ┆ 4443 ┆ 2023-03-30 │\n",
|
319 |
+
"│ model ┆ 1389 ┆ 2023-03-30 │\n",
|
320 |
+
"└───────────┴─────────────────────┴────────────┘"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
"execution_count": 35,
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "execute_result"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"final_df = grouped.with_columns(pl.lit(date.today()).alias(\"date\")).collect()\n",
|
330 |
+
"final_df"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": 36,
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [
|
338 |
+
{
|
339 |
+
"name": "stderr",
|
340 |
+
"output_type": "stream",
|
341 |
+
"text": [
|
342 |
+
"Downloading readme: 100%|██████████| 441/441 [00:00<00:00, 130kB/s]\n"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"name": "stdout",
|
347 |
+
"output_type": "stream",
|
348 |
+
"text": [
|
349 |
+
"Downloading and preparing dataset None/None to /Users/davanstrien/.cache/huggingface/datasets/davanstrien___parquet/davanstrien--notebooks_by_repo_type-1004c11b0535dac5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"name": "stderr",
|
354 |
+
"output_type": "stream",
|
355 |
+
"text": [
|
356 |
+
"Downloading data: 100%|██████████| 1.87k/1.87k [00:00<00:00, 705kB/s]\n",
|
357 |
+
"Downloading data files: 100%|██████████| 1/1 [00:01<00:00, 1.71s/it]\n",
|
358 |
+
"Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 786.78it/s]\n",
|
359 |
+
" "
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"name": "stdout",
|
364 |
+
"output_type": "stream",
|
365 |
+
"text": [
|
366 |
+
"Dataset parquet downloaded and prepared to /Users/davanstrien/.cache/huggingface/datasets/davanstrien___parquet/davanstrien--notebooks_by_repo_type-1004c11b0535dac5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"name": "stderr",
|
371 |
+
"output_type": "stream",
|
372 |
+
"text": [
|
373 |
+
"\r"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"data": {
|
378 |
+
"text/html": [
|
379 |
+
"<div><style>\n",
|
380 |
+
".dataframe > thead > tr > th,\n",
|
381 |
+
".dataframe > tbody > tr > td {\n",
|
382 |
+
" text-align: right;\n",
|
383 |
+
"}\n",
|
384 |
+
"</style>\n",
|
385 |
+
"<small>shape: (7, 3)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>repo_type</th><th>repo_notebook_count</th><th>date</th></tr><tr><td>str</td><td>i64</td><td>date</td></tr></thead><tbody><tr><td>"space"</td><td>3956</td><td>2023-03-27</td></tr><tr><td>"model"</td><td>1346</td><td>2023-03-27</td></tr><tr><td>"model"</td><td>1348</td><td>2023-03-28</td></tr><tr><td>"space"</td><td>4386</td><td>2023-03-28</td></tr><tr><td>"space"</td><td>4422</td><td>2023-03-28</td></tr><tr><td>"space"</td><td>4579</td><td>2023-03-29</td></tr><tr><td>"model"</td><td>1384</td><td>2023-03-29</td></tr></tbody></table></div>"
|
386 |
+
],
|
387 |
+
"text/plain": [
|
388 |
+
"shape: (7, 3)\n",
|
389 |
+
"┌───────────┬─────────────────────┬────────────┐\n",
|
390 |
+
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
|
391 |
+
"│ --- ┆ --- ┆ --- │\n",
|
392 |
+
"│ str ┆ i64 ┆ date │\n",
|
393 |
+
"╞═══════════╪═════════════════════╪════════════╡\n",
|
394 |
+
"│ space ┆ 3956 ┆ 2023-03-27 │\n",
|
395 |
+
"│ model ┆ 1346 ┆ 2023-03-27 │\n",
|
396 |
+
"│ model ┆ 1348 ┆ 2023-03-28 │\n",
|
397 |
+
"│ space ┆ 4386 ┆ 2023-03-28 │\n",
|
398 |
+
"│ space ┆ 4422 ┆ 2023-03-28 │\n",
|
399 |
+
"│ space ┆ 4579 ┆ 2023-03-29 │\n",
|
400 |
+
"│ model ┆ 1384 ┆ 2023-03-29 │\n",
|
401 |
+
"└───────────┴─────────────────────┴────────────┘"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
"execution_count": 36,
|
405 |
+
"metadata": {},
|
406 |
+
"output_type": "execute_result"
|
407 |
+
}
|
408 |
+
],
|
409 |
+
"source": [
|
410 |
+
"previous_df = pl.DataFrame(\n",
|
411 |
+
" load_dataset(\"davanstrien/notebooks_by_repo_type\", split=\"train\").data.table\n",
|
412 |
+
")\n",
|
413 |
+
"previous_df"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": 37,
|
419 |
+
"metadata": {},
|
420 |
+
"outputs": [],
|
421 |
+
"source": [
|
422 |
+
"final_df = pl.concat([previous_df, final_df]).unique()"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": 57,
|
428 |
+
"metadata": {},
|
429 |
+
"outputs": [],
|
430 |
+
"source": [
|
431 |
+
"spaces = final_df.filter(pl.col(\"repo_type\") == \"space\").unique(subset=[\"date\"])\n",
|
432 |
+
"models = final_df.filter(pl.col(\"repo_type\") == \"model\").unique(subset=[\"date\"])"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": 58,
|
438 |
+
"metadata": {},
|
439 |
+
"outputs": [],
|
440 |
+
"source": [
|
441 |
+
"final_df = pl.concat([spaces, models]).unique()"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "code",
|
446 |
+
"execution_count": 62,
|
447 |
+
"metadata": {},
|
448 |
+
"outputs": [
|
449 |
+
{
|
450 |
+
"data": {
|
451 |
+
"text/html": [
|
452 |
+
"<div><style>\n",
|
453 |
+
".dataframe > thead > tr > th,\n",
|
454 |
+
".dataframe > tbody > tr > td {\n",
|
455 |
+
" text-align: right;\n",
|
456 |
+
"}\n",
|
457 |
+
"</style>\n",
|
458 |
+
"<small>shape: (8, 3)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>repo_type</th><th>repo_notebook_count</th><th>date</th></tr><tr><td>str</td><td>i64</td><td>date</td></tr></thead><tbody><tr><td>"space"</td><td>3956</td><td>2023-03-27</td></tr><tr><td>"model"</td><td>1346</td><td>2023-03-27</td></tr><tr><td>"space"</td><td>4386</td><td>2023-03-28</td></tr><tr><td>"model"</td><td>1348</td><td>2023-03-28</td></tr><tr><td>"space"</td><td>4579</td><td>2023-03-29</td></tr><tr><td>"model"</td><td>1384</td><td>2023-03-29</td></tr><tr><td>"space"</td><td>4443</td><td>2023-03-30</td></tr><tr><td>"model"</td><td>1389</td><td>2023-03-30</td></tr></tbody></table></div>"
|
459 |
+
],
|
460 |
+
"text/plain": [
|
461 |
+
"shape: (8, 3)\n",
|
462 |
+
"┌───────────┬─────────────────────┬────────────┐\n",
|
463 |
+
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
|
464 |
+
"│ --- ┆ --- ┆ --- │\n",
|
465 |
+
"│ str ┆ i64 ┆ date │\n",
|
466 |
+
"╞═══════════╪═════════════════════╪════════════╡\n",
|
467 |
+
"│ space ┆ 3956 ┆ 2023-03-27 │\n",
|
468 |
+
"│ model ┆ 1346 ┆ 2023-03-27 │\n",
|
469 |
+
"│ space ┆ 4386 ┆ 2023-03-28 │\n",
|
470 |
+
"│ model ┆ 1348 ┆ 2023-03-28 │\n",
|
471 |
+
"│ space ┆ 4579 ┆ 2023-03-29 │\n",
|
472 |
+
"│ model ┆ 1384 ┆ 2023-03-29 │\n",
|
473 |
+
"│ space ┆ 4443 ┆ 2023-03-30 │\n",
|
474 |
+
"│ model ┆ 1389 ┆ 2023-03-30 │\n",
|
475 |
+
"└───────────┴─────────────────────┴────────────┘"
|
476 |
+
]
|
477 |
+
},
|
478 |
+
"execution_count": 62,
|
479 |
+
"metadata": {},
|
480 |
+
"output_type": "execute_result"
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"source": [
|
484 |
+
"final_df = final_df.sort(\"date\")\n",
|
485 |
+
"final_df"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"cell_type": "code",
|
490 |
+
"execution_count": 55,
|
491 |
+
"metadata": {},
|
492 |
+
"outputs": [
|
493 |
+
{
|
494 |
+
"data": {
|
495 |
+
"text/plain": [
|
496 |
+
"<polars.dataframe.groupby.GroupBy at 0x2a1035d10>"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"execution_count": 55,
|
500 |
+
"metadata": {},
|
501 |
+
"output_type": "execute_result"
|
502 |
+
}
|
503 |
+
],
|
504 |
+
"source": [
|
505 |
+
"final_df.groupby(\"repo_type\")"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"execution_count": 63,
|
511 |
+
"metadata": {},
|
512 |
+
"outputs": [
|
513 |
+
{
|
514 |
+
"name": "stderr",
|
515 |
+
"output_type": "stream",
|
516 |
+
"text": [
|
517 |
+
"Creating parquet from Arrow format: 100%|██████████| 1/1 [00:00<00:00, 730.46ba/s]\n",
|
518 |
+
"Upload 1 LFS files: 100%|██████████| 1/1 [00:00<00:00, 1.26it/s]\n",
|
519 |
+
"Pushing dataset shards to the dataset hub: 100%|██████████| 1/1 [00:02<00:00, 2.14s/it]\n",
|
520 |
+
"Deleting unused files from dataset repository: 100%|██████████| 1/1 [00:00<00:00, 1.87it/s]\n",
|
521 |
+
"Downloading metadata: 100%|██████████| 441/441 [00:00<00:00, 173kB/s]\n",
|
522 |
+
"Updating downloaded metadata with the new split.\n"
|
523 |
+
]
|
524 |
+
}
|
525 |
+
],
|
526 |
+
"source": [
|
527 |
+
"Dataset(final_df.to_arrow()).push_to_hub(\n",
|
528 |
+
" \"davanstrien/notebooks_by_repo_type\", token=HF_TOKEN\n",
|
529 |
+
")"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 73,
|
535 |
+
"metadata": {
|
536 |
+
"colab": {
|
537 |
+
"base_uri": "https://localhost:8080/",
|
538 |
+
"height": 224
|
539 |
+
},
|
540 |
+
"id": "T3vhuLpgdyKh",
|
541 |
+
"outputId": "82a58845-ec9f-40d7-cbad-abddf7ad467a"
|
542 |
+
},
|
543 |
+
"outputs": [],
|
544 |
+
"source": [
|
545 |
+
"final_df = final_df.sort(\"date\")\n",
|
546 |
+
"pandas_df = final_df.to_pandas()"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 65,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [
|
554 |
+
{
|
555 |
+
"data": {
|
556 |
+
"text/html": [
|
557 |
+
"<div>\n",
|
558 |
+
"<style scoped>\n",
|
559 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
560 |
+
" vertical-align: middle;\n",
|
561 |
+
" }\n",
|
562 |
+
"\n",
|
563 |
+
" .dataframe tbody tr th {\n",
|
564 |
+
" vertical-align: top;\n",
|
565 |
+
" }\n",
|
566 |
+
"\n",
|
567 |
+
" .dataframe thead th {\n",
|
568 |
+
" text-align: right;\n",
|
569 |
+
" }\n",
|
570 |
+
"</style>\n",
|
571 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
572 |
+
" <thead>\n",
|
573 |
+
" <tr style=\"text-align: right;\">\n",
|
574 |
+
" <th></th>\n",
|
575 |
+
" <th>repo_type</th>\n",
|
576 |
+
" <th>repo_notebook_count</th>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" <tr>\n",
|
579 |
+
" <th>date</th>\n",
|
580 |
+
" <th></th>\n",
|
581 |
+
" <th></th>\n",
|
582 |
+
" </tr>\n",
|
583 |
+
" </thead>\n",
|
584 |
+
" <tbody>\n",
|
585 |
+
" <tr>\n",
|
586 |
+
" <th>2023-03-27</th>\n",
|
587 |
+
" <td>space</td>\n",
|
588 |
+
" <td>3956</td>\n",
|
589 |
+
" </tr>\n",
|
590 |
+
" <tr>\n",
|
591 |
+
" <th>2023-03-27</th>\n",
|
592 |
+
" <td>model</td>\n",
|
593 |
+
" <td>1346</td>\n",
|
594 |
+
" </tr>\n",
|
595 |
+
" <tr>\n",
|
596 |
+
" <th>2023-03-28</th>\n",
|
597 |
+
" <td>space</td>\n",
|
598 |
+
" <td>4386</td>\n",
|
599 |
+
" </tr>\n",
|
600 |
+
" <tr>\n",
|
601 |
+
" <th>2023-03-28</th>\n",
|
602 |
+
" <td>model</td>\n",
|
603 |
+
" <td>1348</td>\n",
|
604 |
+
" </tr>\n",
|
605 |
+
" <tr>\n",
|
606 |
+
" <th>2023-03-29</th>\n",
|
607 |
+
" <td>space</td>\n",
|
608 |
+
" <td>4579</td>\n",
|
609 |
+
" </tr>\n",
|
610 |
+
" <tr>\n",
|
611 |
+
" <th>2023-03-29</th>\n",
|
612 |
+
" <td>model</td>\n",
|
613 |
+
" <td>1384</td>\n",
|
614 |
+
" </tr>\n",
|
615 |
+
" <tr>\n",
|
616 |
+
" <th>2023-03-30</th>\n",
|
617 |
+
" <td>space</td>\n",
|
618 |
+
" <td>4443</td>\n",
|
619 |
+
" </tr>\n",
|
620 |
+
" <tr>\n",
|
621 |
+
" <th>2023-03-30</th>\n",
|
622 |
+
" <td>model</td>\n",
|
623 |
+
" <td>1389</td>\n",
|
624 |
+
" </tr>\n",
|
625 |
+
" </tbody>\n",
|
626 |
+
"</table>\n",
|
627 |
+
"</div>"
|
628 |
+
],
|
629 |
+
"text/plain": [
|
630 |
+
" repo_type repo_notebook_count\n",
|
631 |
+
"date \n",
|
632 |
+
"2023-03-27 space 3956\n",
|
633 |
+
"2023-03-27 model 1346\n",
|
634 |
+
"2023-03-28 space 4386\n",
|
635 |
+
"2023-03-28 model 1348\n",
|
636 |
+
"2023-03-29 space 4579\n",
|
637 |
+
"2023-03-29 model 1384\n",
|
638 |
+
"2023-03-30 space 4443\n",
|
639 |
+
"2023-03-30 model 1389"
|
640 |
+
]
|
641 |
+
},
|
642 |
+
"execution_count": 65,
|
643 |
+
"metadata": {},
|
644 |
+
"output_type": "execute_result"
|
645 |
+
}
|
646 |
+
],
|
647 |
+
"source": [
|
648 |
+
"# final_df.to_pandas().set_index(\"date\", drop=True).sort_index()"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"cell_type": "code",
|
653 |
+
"execution_count": null,
|
654 |
+
"metadata": {},
|
655 |
+
"outputs": [],
|
656 |
+
"source": []
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"cell_type": "code",
|
660 |
+
"execution_count": 66,
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"data": {
|
665 |
+
"application/vnd.plotly.v1+json": {
|
666 |
+
"config": {
|
667 |
+
"plotlyServerURL": "https://plot.ly"
|
668 |
+
},
|
669 |
+
"data": [
|
670 |
+
{
|
671 |
+
"hovertemplate": "repo_type=space<br>date=%{x}<br>repo_notebook_count=%{y}<extra></extra>",
|
672 |
+
"legendgroup": "space",
|
673 |
+
"line": {
|
674 |
+
"color": "#636efa",
|
675 |
+
"dash": "solid"
|
676 |
+
},
|
677 |
+
"marker": {
|
678 |
+
"symbol": "circle"
|
679 |
+
},
|
680 |
+
"mode": "lines",
|
681 |
+
"name": "space",
|
682 |
+
"orientation": "v",
|
683 |
+
"showlegend": true,
|
684 |
+
"type": "scatter",
|
685 |
+
"x": [
|
686 |
+
"2023-03-27T00:00:00",
|
687 |
+
"2023-03-28T00:00:00",
|
688 |
+
"2023-03-29T00:00:00",
|
689 |
+
"2023-03-30T00:00:00"
|
690 |
+
],
|
691 |
+
"xaxis": "x",
|
692 |
+
"y": [
|
693 |
+
3956,
|
694 |
+
4386,
|
695 |
+
4579,
|
696 |
+
4443
|
697 |
+
],
|
698 |
+
"yaxis": "y"
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"hovertemplate": "repo_type=model<br>date=%{x}<br>repo_notebook_count=%{y}<extra></extra>",
|
702 |
+
"legendgroup": "model",
|
703 |
+
"line": {
|
704 |
+
"color": "#EF553B",
|
705 |
+
"dash": "solid"
|
706 |
+
},
|
707 |
+
"marker": {
|
708 |
+
"symbol": "circle"
|
709 |
+
},
|
710 |
+
"mode": "lines",
|
711 |
+
"name": "model",
|
712 |
+
"orientation": "v",
|
713 |
+
"showlegend": true,
|
714 |
+
"type": "scatter",
|
715 |
+
"x": [
|
716 |
+
"2023-03-27T00:00:00",
|
717 |
+
"2023-03-28T00:00:00",
|
718 |
+
"2023-03-29T00:00:00",
|
719 |
+
"2023-03-30T00:00:00"
|
720 |
+
],
|
721 |
+
"xaxis": "x",
|
722 |
+
"y": [
|
723 |
+
1346,
|
724 |
+
1348,
|
725 |
+
1384,
|
726 |
+
1389
|
727 |
+
],
|
728 |
+
"yaxis": "y"
|
729 |
+
}
|
730 |
+
],
|
731 |
+
"layout": {
|
732 |
+
"legend": {
|
733 |
+
"title": {
|
734 |
+
"text": "repo_type"
|
735 |
+
},
|
736 |
+
"tracegroupgap": 0
|
737 |
+
},
|
738 |
+
"margin": {
|
739 |
+
"t": 60
|
740 |
+
},
|
741 |
+
"template": {
|
742 |
+
"data": {
|
743 |
+
"bar": [
|
744 |
+
{
|
745 |
+
"error_x": {
|
746 |
+
"color": "#2a3f5f"
|
747 |
+
},
|
748 |
+
"error_y": {
|
749 |
+
"color": "#2a3f5f"
|
750 |
+
},
|
751 |
+
"marker": {
|
752 |
+
"line": {
|
753 |
+
"color": "#E5ECF6",
|
754 |
+
"width": 0.5
|
755 |
+
},
|
756 |
+
"pattern": {
|
757 |
+
"fillmode": "overlay",
|
758 |
+
"size": 10,
|
759 |
+
"solidity": 0.2
|
760 |
+
}
|
761 |
+
},
|
762 |
+
"type": "bar"
|
763 |
+
}
|
764 |
+
],
|
765 |
+
"barpolar": [
|
766 |
+
{
|
767 |
+
"marker": {
|
768 |
+
"line": {
|
769 |
+
"color": "#E5ECF6",
|
770 |
+
"width": 0.5
|
771 |
+
},
|
772 |
+
"pattern": {
|
773 |
+
"fillmode": "overlay",
|
774 |
+
"size": 10,
|
775 |
+
"solidity": 0.2
|
776 |
+
}
|
777 |
+
},
|
778 |
+
"type": "barpolar"
|
779 |
+
}
|
780 |
+
],
|
781 |
+
"carpet": [
|
782 |
+
{
|
783 |
+
"aaxis": {
|
784 |
+
"endlinecolor": "#2a3f5f",
|
785 |
+
"gridcolor": "white",
|
786 |
+
"linecolor": "white",
|
787 |
+
"minorgridcolor": "white",
|
788 |
+
"startlinecolor": "#2a3f5f"
|
789 |
+
},
|
790 |
+
"baxis": {
|
791 |
+
"endlinecolor": "#2a3f5f",
|
792 |
+
"gridcolor": "white",
|
793 |
+
"linecolor": "white",
|
794 |
+
"minorgridcolor": "white",
|
795 |
+
"startlinecolor": "#2a3f5f"
|
796 |
+
},
|
797 |
+
"type": "carpet"
|
798 |
+
}
|
799 |
+
],
|
800 |
+
"choropleth": [
|
801 |
+
{
|
802 |
+
"colorbar": {
|
803 |
+
"outlinewidth": 0,
|
804 |
+
"ticks": ""
|
805 |
+
},
|
806 |
+
"type": "choropleth"
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"contour": [
|
810 |
+
{
|
811 |
+
"colorbar": {
|
812 |
+
"outlinewidth": 0,
|
813 |
+
"ticks": ""
|
814 |
+
},
|
815 |
+
"colorscale": [
|
816 |
+
[
|
817 |
+
0,
|
818 |
+
"#0d0887"
|
819 |
+
],
|
820 |
+
[
|
821 |
+
0.1111111111111111,
|
822 |
+
"#46039f"
|
823 |
+
],
|
824 |
+
[
|
825 |
+
0.2222222222222222,
|
826 |
+
"#7201a8"
|
827 |
+
],
|
828 |
+
[
|
829 |
+
0.3333333333333333,
|
830 |
+
"#9c179e"
|
831 |
+
],
|
832 |
+
[
|
833 |
+
0.4444444444444444,
|
834 |
+
"#bd3786"
|
835 |
+
],
|
836 |
+
[
|
837 |
+
0.5555555555555556,
|
838 |
+
"#d8576b"
|
839 |
+
],
|
840 |
+
[
|
841 |
+
0.6666666666666666,
|
842 |
+
"#ed7953"
|
843 |
+
],
|
844 |
+
[
|
845 |
+
0.7777777777777778,
|
846 |
+
"#fb9f3a"
|
847 |
+
],
|
848 |
+
[
|
849 |
+
0.8888888888888888,
|
850 |
+
"#fdca26"
|
851 |
+
],
|
852 |
+
[
|
853 |
+
1,
|
854 |
+
"#f0f921"
|
855 |
+
]
|
856 |
+
],
|
857 |
+
"type": "contour"
|
858 |
+
}
|
859 |
+
],
|
860 |
+
"contourcarpet": [
|
861 |
+
{
|
862 |
+
"colorbar": {
|
863 |
+
"outlinewidth": 0,
|
864 |
+
"ticks": ""
|
865 |
+
},
|
866 |
+
"type": "contourcarpet"
|
867 |
+
}
|
868 |
+
],
|
869 |
+
"heatmap": [
|
870 |
+
{
|
871 |
+
"colorbar": {
|
872 |
+
"outlinewidth": 0,
|
873 |
+
"ticks": ""
|
874 |
+
},
|
875 |
+
"colorscale": [
|
876 |
+
[
|
877 |
+
0,
|
878 |
+
"#0d0887"
|
879 |
+
],
|
880 |
+
[
|
881 |
+
0.1111111111111111,
|
882 |
+
"#46039f"
|
883 |
+
],
|
884 |
+
[
|
885 |
+
0.2222222222222222,
|
886 |
+
"#7201a8"
|
887 |
+
],
|
888 |
+
[
|
889 |
+
0.3333333333333333,
|
890 |
+
"#9c179e"
|
891 |
+
],
|
892 |
+
[
|
893 |
+
0.4444444444444444,
|
894 |
+
"#bd3786"
|
895 |
+
],
|
896 |
+
[
|
897 |
+
0.5555555555555556,
|
898 |
+
"#d8576b"
|
899 |
+
],
|
900 |
+
[
|
901 |
+
0.6666666666666666,
|
902 |
+
"#ed7953"
|
903 |
+
],
|
904 |
+
[
|
905 |
+
0.7777777777777778,
|
906 |
+
"#fb9f3a"
|
907 |
+
],
|
908 |
+
[
|
909 |
+
0.8888888888888888,
|
910 |
+
"#fdca26"
|
911 |
+
],
|
912 |
+
[
|
913 |
+
1,
|
914 |
+
"#f0f921"
|
915 |
+
]
|
916 |
+
],
|
917 |
+
"type": "heatmap"
|
918 |
+
}
|
919 |
+
],
|
920 |
+
"heatmapgl": [
|
921 |
+
{
|
922 |
+
"colorbar": {
|
923 |
+
"outlinewidth": 0,
|
924 |
+
"ticks": ""
|
925 |
+
},
|
926 |
+
"colorscale": [
|
927 |
+
[
|
928 |
+
0,
|
929 |
+
"#0d0887"
|
930 |
+
],
|
931 |
+
[
|
932 |
+
0.1111111111111111,
|
933 |
+
"#46039f"
|
934 |
+
],
|
935 |
+
[
|
936 |
+
0.2222222222222222,
|
937 |
+
"#7201a8"
|
938 |
+
],
|
939 |
+
[
|
940 |
+
0.3333333333333333,
|
941 |
+
"#9c179e"
|
942 |
+
],
|
943 |
+
[
|
944 |
+
0.4444444444444444,
|
945 |
+
"#bd3786"
|
946 |
+
],
|
947 |
+
[
|
948 |
+
0.5555555555555556,
|
949 |
+
"#d8576b"
|
950 |
+
],
|
951 |
+
[
|
952 |
+
0.6666666666666666,
|
953 |
+
"#ed7953"
|
954 |
+
],
|
955 |
+
[
|
956 |
+
0.7777777777777778,
|
957 |
+
"#fb9f3a"
|
958 |
+
],
|
959 |
+
[
|
960 |
+
0.8888888888888888,
|
961 |
+
"#fdca26"
|
962 |
+
],
|
963 |
+
[
|
964 |
+
1,
|
965 |
+
"#f0f921"
|
966 |
+
]
|
967 |
+
],
|
968 |
+
"type": "heatmapgl"
|
969 |
+
}
|
970 |
+
],
|
971 |
+
"histogram": [
|
972 |
+
{
|
973 |
+
"marker": {
|
974 |
+
"pattern": {
|
975 |
+
"fillmode": "overlay",
|
976 |
+
"size": 10,
|
977 |
+
"solidity": 0.2
|
978 |
+
}
|
979 |
+
},
|
980 |
+
"type": "histogram"
|
981 |
+
}
|
982 |
+
],
|
983 |
+
"histogram2d": [
|
984 |
+
{
|
985 |
+
"colorbar": {
|
986 |
+
"outlinewidth": 0,
|
987 |
+
"ticks": ""
|
988 |
+
},
|
989 |
+
"colorscale": [
|
990 |
+
[
|
991 |
+
0,
|
992 |
+
"#0d0887"
|
993 |
+
],
|
994 |
+
[
|
995 |
+
0.1111111111111111,
|
996 |
+
"#46039f"
|
997 |
+
],
|
998 |
+
[
|
999 |
+
0.2222222222222222,
|
1000 |
+
"#7201a8"
|
1001 |
+
],
|
1002 |
+
[
|
1003 |
+
0.3333333333333333,
|
1004 |
+
"#9c179e"
|
1005 |
+
],
|
1006 |
+
[
|
1007 |
+
0.4444444444444444,
|
1008 |
+
"#bd3786"
|
1009 |
+
],
|
1010 |
+
[
|
1011 |
+
0.5555555555555556,
|
1012 |
+
"#d8576b"
|
1013 |
+
],
|
1014 |
+
[
|
1015 |
+
0.6666666666666666,
|
1016 |
+
"#ed7953"
|
1017 |
+
],
|
1018 |
+
[
|
1019 |
+
0.7777777777777778,
|
1020 |
+
"#fb9f3a"
|
1021 |
+
],
|
1022 |
+
[
|
1023 |
+
0.8888888888888888,
|
1024 |
+
"#fdca26"
|
1025 |
+
],
|
1026 |
+
[
|
1027 |
+
1,
|
1028 |
+
"#f0f921"
|
1029 |
+
]
|
1030 |
+
],
|
1031 |
+
"type": "histogram2d"
|
1032 |
+
}
|
1033 |
+
],
|
1034 |
+
"histogram2dcontour": [
|
1035 |
+
{
|
1036 |
+
"colorbar": {
|
1037 |
+
"outlinewidth": 0,
|
1038 |
+
"ticks": ""
|
1039 |
+
},
|
1040 |
+
"colorscale": [
|
1041 |
+
[
|
1042 |
+
0,
|
1043 |
+
"#0d0887"
|
1044 |
+
],
|
1045 |
+
[
|
1046 |
+
0.1111111111111111,
|
1047 |
+
"#46039f"
|
1048 |
+
],
|
1049 |
+
[
|
1050 |
+
0.2222222222222222,
|
1051 |
+
"#7201a8"
|
1052 |
+
],
|
1053 |
+
[
|
1054 |
+
0.3333333333333333,
|
1055 |
+
"#9c179e"
|
1056 |
+
],
|
1057 |
+
[
|
1058 |
+
0.4444444444444444,
|
1059 |
+
"#bd3786"
|
1060 |
+
],
|
1061 |
+
[
|
1062 |
+
0.5555555555555556,
|
1063 |
+
"#d8576b"
|
1064 |
+
],
|
1065 |
+
[
|
1066 |
+
0.6666666666666666,
|
1067 |
+
"#ed7953"
|
1068 |
+
],
|
1069 |
+
[
|
1070 |
+
0.7777777777777778,
|
1071 |
+
"#fb9f3a"
|
1072 |
+
],
|
1073 |
+
[
|
1074 |
+
0.8888888888888888,
|
1075 |
+
"#fdca26"
|
1076 |
+
],
|
1077 |
+
[
|
1078 |
+
1,
|
1079 |
+
"#f0f921"
|
1080 |
+
]
|
1081 |
+
],
|
1082 |
+
"type": "histogram2dcontour"
|
1083 |
+
}
|
1084 |
+
],
|
1085 |
+
"mesh3d": [
|
1086 |
+
{
|
1087 |
+
"colorbar": {
|
1088 |
+
"outlinewidth": 0,
|
1089 |
+
"ticks": ""
|
1090 |
+
},
|
1091 |
+
"type": "mesh3d"
|
1092 |
+
}
|
1093 |
+
],
|
1094 |
+
"parcoords": [
|
1095 |
+
{
|
1096 |
+
"line": {
|
1097 |
+
"colorbar": {
|
1098 |
+
"outlinewidth": 0,
|
1099 |
+
"ticks": ""
|
1100 |
+
}
|
1101 |
+
},
|
1102 |
+
"type": "parcoords"
|
1103 |
+
}
|
1104 |
+
],
|
1105 |
+
"pie": [
|
1106 |
+
{
|
1107 |
+
"automargin": true,
|
1108 |
+
"type": "pie"
|
1109 |
+
}
|
1110 |
+
],
|
1111 |
+
"scatter": [
|
1112 |
+
{
|
1113 |
+
"fillpattern": {
|
1114 |
+
"fillmode": "overlay",
|
1115 |
+
"size": 10,
|
1116 |
+
"solidity": 0.2
|
1117 |
+
},
|
1118 |
+
"type": "scatter"
|
1119 |
+
}
|
1120 |
+
],
|
1121 |
+
"scatter3d": [
|
1122 |
+
{
|
1123 |
+
"line": {
|
1124 |
+
"colorbar": {
|
1125 |
+
"outlinewidth": 0,
|
1126 |
+
"ticks": ""
|
1127 |
+
}
|
1128 |
+
},
|
1129 |
+
"marker": {
|
1130 |
+
"colorbar": {
|
1131 |
+
"outlinewidth": 0,
|
1132 |
+
"ticks": ""
|
1133 |
+
}
|
1134 |
+
},
|
1135 |
+
"type": "scatter3d"
|
1136 |
+
}
|
1137 |
+
],
|
1138 |
+
"scattercarpet": [
|
1139 |
+
{
|
1140 |
+
"marker": {
|
1141 |
+
"colorbar": {
|
1142 |
+
"outlinewidth": 0,
|
1143 |
+
"ticks": ""
|
1144 |
+
}
|
1145 |
+
},
|
1146 |
+
"type": "scattercarpet"
|
1147 |
+
}
|
1148 |
+
],
|
1149 |
+
"scattergeo": [
|
1150 |
+
{
|
1151 |
+
"marker": {
|
1152 |
+
"colorbar": {
|
1153 |
+
"outlinewidth": 0,
|
1154 |
+
"ticks": ""
|
1155 |
+
}
|
1156 |
+
},
|
1157 |
+
"type": "scattergeo"
|
1158 |
+
}
|
1159 |
+
],
|
1160 |
+
"scattergl": [
|
1161 |
+
{
|
1162 |
+
"marker": {
|
1163 |
+
"colorbar": {
|
1164 |
+
"outlinewidth": 0,
|
1165 |
+
"ticks": ""
|
1166 |
+
}
|
1167 |
+
},
|
1168 |
+
"type": "scattergl"
|
1169 |
+
}
|
1170 |
+
],
|
1171 |
+
"scattermapbox": [
|
1172 |
+
{
|
1173 |
+
"marker": {
|
1174 |
+
"colorbar": {
|
1175 |
+
"outlinewidth": 0,
|
1176 |
+
"ticks": ""
|
1177 |
+
}
|
1178 |
+
},
|
1179 |
+
"type": "scattermapbox"
|
1180 |
+
}
|
1181 |
+
],
|
1182 |
+
"scatterpolar": [
|
1183 |
+
{
|
1184 |
+
"marker": {
|
1185 |
+
"colorbar": {
|
1186 |
+
"outlinewidth": 0,
|
1187 |
+
"ticks": ""
|
1188 |
+
}
|
1189 |
+
},
|
1190 |
+
"type": "scatterpolar"
|
1191 |
+
}
|
1192 |
+
],
|
1193 |
+
"scatterpolargl": [
|
1194 |
+
{
|
1195 |
+
"marker": {
|
1196 |
+
"colorbar": {
|
1197 |
+
"outlinewidth": 0,
|
1198 |
+
"ticks": ""
|
1199 |
+
}
|
1200 |
+
},
|
1201 |
+
"type": "scatterpolargl"
|
1202 |
+
}
|
1203 |
+
],
|
1204 |
+
"scatterternary": [
|
1205 |
+
{
|
1206 |
+
"marker": {
|
1207 |
+
"colorbar": {
|
1208 |
+
"outlinewidth": 0,
|
1209 |
+
"ticks": ""
|
1210 |
+
}
|
1211 |
+
},
|
1212 |
+
"type": "scatterternary"
|
1213 |
+
}
|
1214 |
+
],
|
1215 |
+
"surface": [
|
1216 |
+
{
|
1217 |
+
"colorbar": {
|
1218 |
+
"outlinewidth": 0,
|
1219 |
+
"ticks": ""
|
1220 |
+
},
|
1221 |
+
"colorscale": [
|
1222 |
+
[
|
1223 |
+
0,
|
1224 |
+
"#0d0887"
|
1225 |
+
],
|
1226 |
+
[
|
1227 |
+
0.1111111111111111,
|
1228 |
+
"#46039f"
|
1229 |
+
],
|
1230 |
+
[
|
1231 |
+
0.2222222222222222,
|
1232 |
+
"#7201a8"
|
1233 |
+
],
|
1234 |
+
[
|
1235 |
+
0.3333333333333333,
|
1236 |
+
"#9c179e"
|
1237 |
+
],
|
1238 |
+
[
|
1239 |
+
0.4444444444444444,
|
1240 |
+
"#bd3786"
|
1241 |
+
],
|
1242 |
+
[
|
1243 |
+
0.5555555555555556,
|
1244 |
+
"#d8576b"
|
1245 |
+
],
|
1246 |
+
[
|
1247 |
+
0.6666666666666666,
|
1248 |
+
"#ed7953"
|
1249 |
+
],
|
1250 |
+
[
|
1251 |
+
0.7777777777777778,
|
1252 |
+
"#fb9f3a"
|
1253 |
+
],
|
1254 |
+
[
|
1255 |
+
0.8888888888888888,
|
1256 |
+
"#fdca26"
|
1257 |
+
],
|
1258 |
+
[
|
1259 |
+
1,
|
1260 |
+
"#f0f921"
|
1261 |
+
]
|
1262 |
+
],
|
1263 |
+
"type": "surface"
|
1264 |
+
}
|
1265 |
+
],
|
1266 |
+
"table": [
|
1267 |
+
{
|
1268 |
+
"cells": {
|
1269 |
+
"fill": {
|
1270 |
+
"color": "#EBF0F8"
|
1271 |
+
},
|
1272 |
+
"line": {
|
1273 |
+
"color": "white"
|
1274 |
+
}
|
1275 |
+
},
|
1276 |
+
"header": {
|
1277 |
+
"fill": {
|
1278 |
+
"color": "#C8D4E3"
|
1279 |
+
},
|
1280 |
+
"line": {
|
1281 |
+
"color": "white"
|
1282 |
+
}
|
1283 |
+
},
|
1284 |
+
"type": "table"
|
1285 |
+
}
|
1286 |
+
]
|
1287 |
+
},
|
1288 |
+
"layout": {
|
1289 |
+
"annotationdefaults": {
|
1290 |
+
"arrowcolor": "#2a3f5f",
|
1291 |
+
"arrowhead": 0,
|
1292 |
+
"arrowwidth": 1
|
1293 |
+
},
|
1294 |
+
"autotypenumbers": "strict",
|
1295 |
+
"coloraxis": {
|
1296 |
+
"colorbar": {
|
1297 |
+
"outlinewidth": 0,
|
1298 |
+
"ticks": ""
|
1299 |
+
}
|
1300 |
+
},
|
1301 |
+
"colorscale": {
|
1302 |
+
"diverging": [
|
1303 |
+
[
|
1304 |
+
0,
|
1305 |
+
"#8e0152"
|
1306 |
+
],
|
1307 |
+
[
|
1308 |
+
0.1,
|
1309 |
+
"#c51b7d"
|
1310 |
+
],
|
1311 |
+
[
|
1312 |
+
0.2,
|
1313 |
+
"#de77ae"
|
1314 |
+
],
|
1315 |
+
[
|
1316 |
+
0.3,
|
1317 |
+
"#f1b6da"
|
1318 |
+
],
|
1319 |
+
[
|
1320 |
+
0.4,
|
1321 |
+
"#fde0ef"
|
1322 |
+
],
|
1323 |
+
[
|
1324 |
+
0.5,
|
1325 |
+
"#f7f7f7"
|
1326 |
+
],
|
1327 |
+
[
|
1328 |
+
0.6,
|
1329 |
+
"#e6f5d0"
|
1330 |
+
],
|
1331 |
+
[
|
1332 |
+
0.7,
|
1333 |
+
"#b8e186"
|
1334 |
+
],
|
1335 |
+
[
|
1336 |
+
0.8,
|
1337 |
+
"#7fbc41"
|
1338 |
+
],
|
1339 |
+
[
|
1340 |
+
0.9,
|
1341 |
+
"#4d9221"
|
1342 |
+
],
|
1343 |
+
[
|
1344 |
+
1,
|
1345 |
+
"#276419"
|
1346 |
+
]
|
1347 |
+
],
|
1348 |
+
"sequential": [
|
1349 |
+
[
|
1350 |
+
0,
|
1351 |
+
"#0d0887"
|
1352 |
+
],
|
1353 |
+
[
|
1354 |
+
0.1111111111111111,
|
1355 |
+
"#46039f"
|
1356 |
+
],
|
1357 |
+
[
|
1358 |
+
0.2222222222222222,
|
1359 |
+
"#7201a8"
|
1360 |
+
],
|
1361 |
+
[
|
1362 |
+
0.3333333333333333,
|
1363 |
+
"#9c179e"
|
1364 |
+
],
|
1365 |
+
[
|
1366 |
+
0.4444444444444444,
|
1367 |
+
"#bd3786"
|
1368 |
+
],
|
1369 |
+
[
|
1370 |
+
0.5555555555555556,
|
1371 |
+
"#d8576b"
|
1372 |
+
],
|
1373 |
+
[
|
1374 |
+
0.6666666666666666,
|
1375 |
+
"#ed7953"
|
1376 |
+
],
|
1377 |
+
[
|
1378 |
+
0.7777777777777778,
|
1379 |
+
"#fb9f3a"
|
1380 |
+
],
|
1381 |
+
[
|
1382 |
+
0.8888888888888888,
|
1383 |
+
"#fdca26"
|
1384 |
+
],
|
1385 |
+
[
|
1386 |
+
1,
|
1387 |
+
"#f0f921"
|
1388 |
+
]
|
1389 |
+
],
|
1390 |
+
"sequentialminus": [
|
1391 |
+
[
|
1392 |
+
0,
|
1393 |
+
"#0d0887"
|
1394 |
+
],
|
1395 |
+
[
|
1396 |
+
0.1111111111111111,
|
1397 |
+
"#46039f"
|
1398 |
+
],
|
1399 |
+
[
|
1400 |
+
0.2222222222222222,
|
1401 |
+
"#7201a8"
|
1402 |
+
],
|
1403 |
+
[
|
1404 |
+
0.3333333333333333,
|
1405 |
+
"#9c179e"
|
1406 |
+
],
|
1407 |
+
[
|
1408 |
+
0.4444444444444444,
|
1409 |
+
"#bd3786"
|
1410 |
+
],
|
1411 |
+
[
|
1412 |
+
0.5555555555555556,
|
1413 |
+
"#d8576b"
|
1414 |
+
],
|
1415 |
+
[
|
1416 |
+
0.6666666666666666,
|
1417 |
+
"#ed7953"
|
1418 |
+
],
|
1419 |
+
[
|
1420 |
+
0.7777777777777778,
|
1421 |
+
"#fb9f3a"
|
1422 |
+
],
|
1423 |
+
[
|
1424 |
+
0.8888888888888888,
|
1425 |
+
"#fdca26"
|
1426 |
+
],
|
1427 |
+
[
|
1428 |
+
1,
|
1429 |
+
"#f0f921"
|
1430 |
+
]
|
1431 |
+
]
|
1432 |
+
},
|
1433 |
+
"colorway": [
|
1434 |
+
"#636efa",
|
1435 |
+
"#EF553B",
|
1436 |
+
"#00cc96",
|
1437 |
+
"#ab63fa",
|
1438 |
+
"#FFA15A",
|
1439 |
+
"#19d3f3",
|
1440 |
+
"#FF6692",
|
1441 |
+
"#B6E880",
|
1442 |
+
"#FF97FF",
|
1443 |
+
"#FECB52"
|
1444 |
+
],
|
1445 |
+
"font": {
|
1446 |
+
"color": "#2a3f5f"
|
1447 |
+
},
|
1448 |
+
"geo": {
|
1449 |
+
"bgcolor": "white",
|
1450 |
+
"lakecolor": "white",
|
1451 |
+
"landcolor": "#E5ECF6",
|
1452 |
+
"showlakes": true,
|
1453 |
+
"showland": true,
|
1454 |
+
"subunitcolor": "white"
|
1455 |
+
},
|
1456 |
+
"hoverlabel": {
|
1457 |
+
"align": "left"
|
1458 |
+
},
|
1459 |
+
"hovermode": "closest",
|
1460 |
+
"mapbox": {
|
1461 |
+
"style": "light"
|
1462 |
+
},
|
1463 |
+
"paper_bgcolor": "white",
|
1464 |
+
"plot_bgcolor": "#E5ECF6",
|
1465 |
+
"polar": {
|
1466 |
+
"angularaxis": {
|
1467 |
+
"gridcolor": "white",
|
1468 |
+
"linecolor": "white",
|
1469 |
+
"ticks": ""
|
1470 |
+
},
|
1471 |
+
"bgcolor": "#E5ECF6",
|
1472 |
+
"radialaxis": {
|
1473 |
+
"gridcolor": "white",
|
1474 |
+
"linecolor": "white",
|
1475 |
+
"ticks": ""
|
1476 |
+
}
|
1477 |
+
},
|
1478 |
+
"scene": {
|
1479 |
+
"xaxis": {
|
1480 |
+
"backgroundcolor": "#E5ECF6",
|
1481 |
+
"gridcolor": "white",
|
1482 |
+
"gridwidth": 2,
|
1483 |
+
"linecolor": "white",
|
1484 |
+
"showbackground": true,
|
1485 |
+
"ticks": "",
|
1486 |
+
"zerolinecolor": "white"
|
1487 |
+
},
|
1488 |
+
"yaxis": {
|
1489 |
+
"backgroundcolor": "#E5ECF6",
|
1490 |
+
"gridcolor": "white",
|
1491 |
+
"gridwidth": 2,
|
1492 |
+
"linecolor": "white",
|
1493 |
+
"showbackground": true,
|
1494 |
+
"ticks": "",
|
1495 |
+
"zerolinecolor": "white"
|
1496 |
+
},
|
1497 |
+
"zaxis": {
|
1498 |
+
"backgroundcolor": "#E5ECF6",
|
1499 |
+
"gridcolor": "white",
|
1500 |
+
"gridwidth": 2,
|
1501 |
+
"linecolor": "white",
|
1502 |
+
"showbackground": true,
|
1503 |
+
"ticks": "",
|
1504 |
+
"zerolinecolor": "white"
|
1505 |
+
}
|
1506 |
+
},
|
1507 |
+
"shapedefaults": {
|
1508 |
+
"line": {
|
1509 |
+
"color": "#2a3f5f"
|
1510 |
+
}
|
1511 |
+
},
|
1512 |
+
"ternary": {
|
1513 |
+
"aaxis": {
|
1514 |
+
"gridcolor": "white",
|
1515 |
+
"linecolor": "white",
|
1516 |
+
"ticks": ""
|
1517 |
+
},
|
1518 |
+
"baxis": {
|
1519 |
+
"gridcolor": "white",
|
1520 |
+
"linecolor": "white",
|
1521 |
+
"ticks": ""
|
1522 |
+
},
|
1523 |
+
"bgcolor": "#E5ECF6",
|
1524 |
+
"caxis": {
|
1525 |
+
"gridcolor": "white",
|
1526 |
+
"linecolor": "white",
|
1527 |
+
"ticks": ""
|
1528 |
+
}
|
1529 |
+
},
|
1530 |
+
"title": {
|
1531 |
+
"x": 0.05
|
1532 |
+
},
|
1533 |
+
"xaxis": {
|
1534 |
+
"automargin": true,
|
1535 |
+
"gridcolor": "white",
|
1536 |
+
"linecolor": "white",
|
1537 |
+
"ticks": "",
|
1538 |
+
"title": {
|
1539 |
+
"standoff": 15
|
1540 |
+
},
|
1541 |
+
"zerolinecolor": "white",
|
1542 |
+
"zerolinewidth": 2
|
1543 |
+
},
|
1544 |
+
"yaxis": {
|
1545 |
+
"automargin": true,
|
1546 |
+
"gridcolor": "white",
|
1547 |
+
"linecolor": "white",
|
1548 |
+
"ticks": "",
|
1549 |
+
"title": {
|
1550 |
+
"standoff": 15
|
1551 |
+
},
|
1552 |
+
"zerolinecolor": "white",
|
1553 |
+
"zerolinewidth": 2
|
1554 |
+
}
|
1555 |
+
}
|
1556 |
+
},
|
1557 |
+
"xaxis": {
|
1558 |
+
"anchor": "y",
|
1559 |
+
"domain": [
|
1560 |
+
0,
|
1561 |
+
1
|
1562 |
+
],
|
1563 |
+
"title": {
|
1564 |
+
"text": "date"
|
1565 |
+
}
|
1566 |
+
},
|
1567 |
+
"yaxis": {
|
1568 |
+
"anchor": "x",
|
1569 |
+
"domain": [
|
1570 |
+
0,
|
1571 |
+
1
|
1572 |
+
],
|
1573 |
+
"title": {
|
1574 |
+
"text": "repo_notebook_count"
|
1575 |
+
}
|
1576 |
+
}
|
1577 |
+
}
|
1578 |
+
}
|
1579 |
+
},
|
1580 |
+
"metadata": {},
|
1581 |
+
"output_type": "display_data"
|
1582 |
+
}
|
1583 |
+
],
|
1584 |
+
"source": [
|
1585 |
+
"px.line(pandas_df, x=\"date\", y=\"repo_notebook_count\", color=\"repo_type\")"
|
1586 |
+
]
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"cell_type": "code",
|
1590 |
+
"execution_count": null,
|
1591 |
+
"metadata": {},
|
1592 |
+
"outputs": [],
|
1593 |
+
"source": []
|
1594 |
+
}
|
1595 |
+
],
|
1596 |
+
"metadata": {
|
1597 |
+
"colab": {
|
1598 |
+
"name": "scratchpad",
|
1599 |
+
"provenance": []
|
1600 |
+
},
|
1601 |
+
"kernelspec": {
|
1602 |
+
"display_name": "Python 3",
|
1603 |
+
"name": "python3"
|
1604 |
+
},
|
1605 |
+
"language_info": {
|
1606 |
+
"codemirror_mode": {
|
1607 |
+
"name": "ipython",
|
1608 |
+
"version": 3
|
1609 |
+
},
|
1610 |
+
"file_extension": ".py",
|
1611 |
+
"mimetype": "text/x-python",
|
1612 |
+
"name": "python",
|
1613 |
+
"nbconvert_exporter": "python",
|
1614 |
+
"pygments_lexer": "ipython3",
|
1615 |
+
"version": "3.11.2"
|
1616 |
+
},
|
1617 |
+
"widgets": {
|
1618 |
+
"application/vnd.jupyter.widget-state+json": {
|
1619 |
+
"0b7aa472a433465bbe03d9f5a596d07c": {
|
1620 |
+
"model_module": "@jupyter-widgets/controls",
|
1621 |
+
"model_module_version": "1.5.0",
|
1622 |
+
"model_name": "HBoxModel",
|
1623 |
+
"state": {
|
1624 |
+
"_dom_classes": [],
|
1625 |
+
"_model_module": "@jupyter-widgets/controls",
|
1626 |
+
"_model_module_version": "1.5.0",
|
1627 |
+
"_model_name": "HBoxModel",
|
1628 |
+
"_view_count": null,
|
1629 |
+
"_view_module": "@jupyter-widgets/controls",
|
1630 |
+
"_view_module_version": "1.5.0",
|
1631 |
+
"_view_name": "HBoxView",
|
1632 |
+
"box_style": "",
|
1633 |
+
"children": [
|
1634 |
+
"IPY_MODEL_590d7059bf1e4c5285ca40e5298b7ee7",
|
1635 |
+
"IPY_MODEL_a82a83de315c43f6b7f9fa787227b2e3",
|
1636 |
+
"IPY_MODEL_4f66bea4e3ce4f508a407788729c958e"
|
1637 |
+
],
|
1638 |
+
"layout": "IPY_MODEL_190d66e96c4b427e998fc412dd2bbd7b"
|
1639 |
+
}
|
1640 |
+
},
|
1641 |
+
"190d66e96c4b427e998fc412dd2bbd7b": {
|
1642 |
+
"model_module": "@jupyter-widgets/base",
|
1643 |
+
"model_module_version": "1.2.0",
|
1644 |
+
"model_name": "LayoutModel",
|
1645 |
+
"state": {
|
1646 |
+
"_model_module": "@jupyter-widgets/base",
|
1647 |
+
"_model_module_version": "1.2.0",
|
1648 |
+
"_model_name": "LayoutModel",
|
1649 |
+
"_view_count": null,
|
1650 |
+
"_view_module": "@jupyter-widgets/base",
|
1651 |
+
"_view_module_version": "1.2.0",
|
1652 |
+
"_view_name": "LayoutView",
|
1653 |
+
"align_content": null,
|
1654 |
+
"align_items": null,
|
1655 |
+
"align_self": null,
|
1656 |
+
"border": null,
|
1657 |
+
"bottom": null,
|
1658 |
+
"display": null,
|
1659 |
+
"flex": null,
|
1660 |
+
"flex_flow": null,
|
1661 |
+
"grid_area": null,
|
1662 |
+
"grid_auto_columns": null,
|
1663 |
+
"grid_auto_flow": null,
|
1664 |
+
"grid_auto_rows": null,
|
1665 |
+
"grid_column": null,
|
1666 |
+
"grid_gap": null,
|
1667 |
+
"grid_row": null,
|
1668 |
+
"grid_template_areas": null,
|
1669 |
+
"grid_template_columns": null,
|
1670 |
+
"grid_template_rows": null,
|
1671 |
+
"height": null,
|
1672 |
+
"justify_content": null,
|
1673 |
+
"justify_items": null,
|
1674 |
+
"left": null,
|
1675 |
+
"margin": null,
|
1676 |
+
"max_height": null,
|
1677 |
+
"max_width": null,
|
1678 |
+
"min_height": null,
|
1679 |
+
"min_width": null,
|
1680 |
+
"object_fit": null,
|
1681 |
+
"object_position": null,
|
1682 |
+
"order": null,
|
1683 |
+
"overflow": null,
|
1684 |
+
"overflow_x": null,
|
1685 |
+
"overflow_y": null,
|
1686 |
+
"padding": null,
|
1687 |
+
"right": null,
|
1688 |
+
"top": null,
|
1689 |
+
"visibility": "hidden",
|
1690 |
+
"width": null
|
1691 |
+
}
|
1692 |
+
},
|
1693 |
+
"266a59ce352c4a65aea3c6e8402ac1ed": {
|
1694 |
+
"model_module": "@jupyter-widgets/base",
|
1695 |
+
"model_module_version": "1.2.0",
|
1696 |
+
"model_name": "LayoutModel",
|
1697 |
+
"state": {
|
1698 |
+
"_model_module": "@jupyter-widgets/base",
|
1699 |
+
"_model_module_version": "1.2.0",
|
1700 |
+
"_model_name": "LayoutModel",
|
1701 |
+
"_view_count": null,
|
1702 |
+
"_view_module": "@jupyter-widgets/base",
|
1703 |
+
"_view_module_version": "1.2.0",
|
1704 |
+
"_view_name": "LayoutView",
|
1705 |
+
"align_content": null,
|
1706 |
+
"align_items": null,
|
1707 |
+
"align_self": null,
|
1708 |
+
"border": null,
|
1709 |
+
"bottom": null,
|
1710 |
+
"display": null,
|
1711 |
+
"flex": null,
|
1712 |
+
"flex_flow": null,
|
1713 |
+
"grid_area": null,
|
1714 |
+
"grid_auto_columns": null,
|
1715 |
+
"grid_auto_flow": null,
|
1716 |
+
"grid_auto_rows": null,
|
1717 |
+
"grid_column": null,
|
1718 |
+
"grid_gap": null,
|
1719 |
+
"grid_row": null,
|
1720 |
+
"grid_template_areas": null,
|
1721 |
+
"grid_template_columns": null,
|
1722 |
+
"grid_template_rows": null,
|
1723 |
+
"height": null,
|
1724 |
+
"justify_content": null,
|
1725 |
+
"justify_items": null,
|
1726 |
+
"left": null,
|
1727 |
+
"margin": null,
|
1728 |
+
"max_height": null,
|
1729 |
+
"max_width": null,
|
1730 |
+
"min_height": null,
|
1731 |
+
"min_width": null,
|
1732 |
+
"object_fit": null,
|
1733 |
+
"object_position": null,
|
1734 |
+
"order": null,
|
1735 |
+
"overflow": null,
|
1736 |
+
"overflow_x": null,
|
1737 |
+
"overflow_y": null,
|
1738 |
+
"padding": null,
|
1739 |
+
"right": null,
|
1740 |
+
"top": null,
|
1741 |
+
"visibility": null,
|
1742 |
+
"width": null
|
1743 |
+
}
|
1744 |
+
},
|
1745 |
+
"4c31add106194a728e308ed486fc2e54": {
|
1746 |
+
"model_module": "@jupyter-widgets/controls",
|
1747 |
+
"model_module_version": "1.5.0",
|
1748 |
+
"model_name": "ProgressStyleModel",
|
1749 |
+
"state": {
|
1750 |
+
"_model_module": "@jupyter-widgets/controls",
|
1751 |
+
"_model_module_version": "1.5.0",
|
1752 |
+
"_model_name": "ProgressStyleModel",
|
1753 |
+
"_view_count": null,
|
1754 |
+
"_view_module": "@jupyter-widgets/base",
|
1755 |
+
"_view_module_version": "1.2.0",
|
1756 |
+
"_view_name": "StyleView",
|
1757 |
+
"bar_color": null,
|
1758 |
+
"description_width": ""
|
1759 |
+
}
|
1760 |
+
},
|
1761 |
+
"4f66bea4e3ce4f508a407788729c958e": {
|
1762 |
+
"model_module": "@jupyter-widgets/controls",
|
1763 |
+
"model_module_version": "1.5.0",
|
1764 |
+
"model_name": "HTMLModel",
|
1765 |
+
"state": {
|
1766 |
+
"_dom_classes": [],
|
1767 |
+
"_model_module": "@jupyter-widgets/controls",
|
1768 |
+
"_model_module_version": "1.5.0",
|
1769 |
+
"_model_name": "HTMLModel",
|
1770 |
+
"_view_count": null,
|
1771 |
+
"_view_module": "@jupyter-widgets/controls",
|
1772 |
+
"_view_module_version": "1.5.0",
|
1773 |
+
"_view_name": "HTMLView",
|
1774 |
+
"description": "",
|
1775 |
+
"description_tooltip": null,
|
1776 |
+
"layout": "IPY_MODEL_266a59ce352c4a65aea3c6e8402ac1ed",
|
1777 |
+
"placeholder": "",
|
1778 |
+
"style": "IPY_MODEL_c28bf5f9ac624739a48d62510d3bb05d",
|
1779 |
+
"value": " 2490/0 [02:11<00:00, 236.08 examples/s]"
|
1780 |
+
}
|
1781 |
+
},
|
1782 |
+
"590d7059bf1e4c5285ca40e5298b7ee7": {
|
1783 |
+
"model_module": "@jupyter-widgets/controls",
|
1784 |
+
"model_module_version": "1.5.0",
|
1785 |
+
"model_name": "HTMLModel",
|
1786 |
+
"state": {
|
1787 |
+
"_dom_classes": [],
|
1788 |
+
"_model_module": "@jupyter-widgets/controls",
|
1789 |
+
"_model_module_version": "1.5.0",
|
1790 |
+
"_model_name": "HTMLModel",
|
1791 |
+
"_view_count": null,
|
1792 |
+
"_view_module": "@jupyter-widgets/controls",
|
1793 |
+
"_view_module_version": "1.5.0",
|
1794 |
+
"_view_name": "HTMLView",
|
1795 |
+
"description": "",
|
1796 |
+
"description_tooltip": null,
|
1797 |
+
"layout": "IPY_MODEL_711a5f5d14ac4af180b54954e814f394",
|
1798 |
+
"placeholder": "",
|
1799 |
+
"style": "IPY_MODEL_605acdd7a4cb4f118951fc79933f62f6",
|
1800 |
+
"value": "Generating train split: "
|
1801 |
+
}
|
1802 |
+
},
|
1803 |
+
"605acdd7a4cb4f118951fc79933f62f6": {
|
1804 |
+
"model_module": "@jupyter-widgets/controls",
|
1805 |
+
"model_module_version": "1.5.0",
|
1806 |
+
"model_name": "DescriptionStyleModel",
|
1807 |
+
"state": {
|
1808 |
+
"_model_module": "@jupyter-widgets/controls",
|
1809 |
+
"_model_module_version": "1.5.0",
|
1810 |
+
"_model_name": "DescriptionStyleModel",
|
1811 |
+
"_view_count": null,
|
1812 |
+
"_view_module": "@jupyter-widgets/base",
|
1813 |
+
"_view_module_version": "1.2.0",
|
1814 |
+
"_view_name": "StyleView",
|
1815 |
+
"description_width": ""
|
1816 |
+
}
|
1817 |
+
},
|
1818 |
+
"711a5f5d14ac4af180b54954e814f394": {
|
1819 |
+
"model_module": "@jupyter-widgets/base",
|
1820 |
+
"model_module_version": "1.2.0",
|
1821 |
+
"model_name": "LayoutModel",
|
1822 |
+
"state": {
|
1823 |
+
"_model_module": "@jupyter-widgets/base",
|
1824 |
+
"_model_module_version": "1.2.0",
|
1825 |
+
"_model_name": "LayoutModel",
|
1826 |
+
"_view_count": null,
|
1827 |
+
"_view_module": "@jupyter-widgets/base",
|
1828 |
+
"_view_module_version": "1.2.0",
|
1829 |
+
"_view_name": "LayoutView",
|
1830 |
+
"align_content": null,
|
1831 |
+
"align_items": null,
|
1832 |
+
"align_self": null,
|
1833 |
+
"border": null,
|
1834 |
+
"bottom": null,
|
1835 |
+
"display": null,
|
1836 |
+
"flex": null,
|
1837 |
+
"flex_flow": null,
|
1838 |
+
"grid_area": null,
|
1839 |
+
"grid_auto_columns": null,
|
1840 |
+
"grid_auto_flow": null,
|
1841 |
+
"grid_auto_rows": null,
|
1842 |
+
"grid_column": null,
|
1843 |
+
"grid_gap": null,
|
1844 |
+
"grid_row": null,
|
1845 |
+
"grid_template_areas": null,
|
1846 |
+
"grid_template_columns": null,
|
1847 |
+
"grid_template_rows": null,
|
1848 |
+
"height": null,
|
1849 |
+
"justify_content": null,
|
1850 |
+
"justify_items": null,
|
1851 |
+
"left": null,
|
1852 |
+
"margin": null,
|
1853 |
+
"max_height": null,
|
1854 |
+
"max_width": null,
|
1855 |
+
"min_height": null,
|
1856 |
+
"min_width": null,
|
1857 |
+
"object_fit": null,
|
1858 |
+
"object_position": null,
|
1859 |
+
"order": null,
|
1860 |
+
"overflow": null,
|
1861 |
+
"overflow_x": null,
|
1862 |
+
"overflow_y": null,
|
1863 |
+
"padding": null,
|
1864 |
+
"right": null,
|
1865 |
+
"top": null,
|
1866 |
+
"visibility": null,
|
1867 |
+
"width": null
|
1868 |
+
}
|
1869 |
+
},
|
1870 |
+
"a82a83de315c43f6b7f9fa787227b2e3": {
|
1871 |
+
"model_module": "@jupyter-widgets/controls",
|
1872 |
+
"model_module_version": "1.5.0",
|
1873 |
+
"model_name": "FloatProgressModel",
|
1874 |
+
"state": {
|
1875 |
+
"_dom_classes": [],
|
1876 |
+
"_model_module": "@jupyter-widgets/controls",
|
1877 |
+
"_model_module_version": "1.5.0",
|
1878 |
+
"_model_name": "FloatProgressModel",
|
1879 |
+
"_view_count": null,
|
1880 |
+
"_view_module": "@jupyter-widgets/controls",
|
1881 |
+
"_view_module_version": "1.5.0",
|
1882 |
+
"_view_name": "ProgressView",
|
1883 |
+
"bar_style": "info",
|
1884 |
+
"description": "",
|
1885 |
+
"description_tooltip": null,
|
1886 |
+
"layout": "IPY_MODEL_c13a0581f0ff46c4a399627cd8aa1c0c",
|
1887 |
+
"max": 1,
|
1888 |
+
"min": 0,
|
1889 |
+
"orientation": "horizontal",
|
1890 |
+
"style": "IPY_MODEL_4c31add106194a728e308ed486fc2e54",
|
1891 |
+
"value": 1
|
1892 |
+
}
|
1893 |
+
},
|
1894 |
+
"c13a0581f0ff46c4a399627cd8aa1c0c": {
|
1895 |
+
"model_module": "@jupyter-widgets/base",
|
1896 |
+
"model_module_version": "1.2.0",
|
1897 |
+
"model_name": "LayoutModel",
|
1898 |
+
"state": {
|
1899 |
+
"_model_module": "@jupyter-widgets/base",
|
1900 |
+
"_model_module_version": "1.2.0",
|
1901 |
+
"_model_name": "LayoutModel",
|
1902 |
+
"_view_count": null,
|
1903 |
+
"_view_module": "@jupyter-widgets/base",
|
1904 |
+
"_view_module_version": "1.2.0",
|
1905 |
+
"_view_name": "LayoutView",
|
1906 |
+
"align_content": null,
|
1907 |
+
"align_items": null,
|
1908 |
+
"align_self": null,
|
1909 |
+
"border": null,
|
1910 |
+
"bottom": null,
|
1911 |
+
"display": null,
|
1912 |
+
"flex": null,
|
1913 |
+
"flex_flow": null,
|
1914 |
+
"grid_area": null,
|
1915 |
+
"grid_auto_columns": null,
|
1916 |
+
"grid_auto_flow": null,
|
1917 |
+
"grid_auto_rows": null,
|
1918 |
+
"grid_column": null,
|
1919 |
+
"grid_gap": null,
|
1920 |
+
"grid_row": null,
|
1921 |
+
"grid_template_areas": null,
|
1922 |
+
"grid_template_columns": null,
|
1923 |
+
"grid_template_rows": null,
|
1924 |
+
"height": null,
|
1925 |
+
"justify_content": null,
|
1926 |
+
"justify_items": null,
|
1927 |
+
"left": null,
|
1928 |
+
"margin": null,
|
1929 |
+
"max_height": null,
|
1930 |
+
"max_width": null,
|
1931 |
+
"min_height": null,
|
1932 |
+
"min_width": null,
|
1933 |
+
"object_fit": null,
|
1934 |
+
"object_position": null,
|
1935 |
+
"order": null,
|
1936 |
+
"overflow": null,
|
1937 |
+
"overflow_x": null,
|
1938 |
+
"overflow_y": null,
|
1939 |
+
"padding": null,
|
1940 |
+
"right": null,
|
1941 |
+
"top": null,
|
1942 |
+
"visibility": null,
|
1943 |
+
"width": "20px"
|
1944 |
+
}
|
1945 |
+
},
|
1946 |
+
"c28bf5f9ac624739a48d62510d3bb05d": {
|
1947 |
+
"model_module": "@jupyter-widgets/controls",
|
1948 |
+
"model_module_version": "1.5.0",
|
1949 |
+
"model_name": "DescriptionStyleModel",
|
1950 |
+
"state": {
|
1951 |
+
"_model_module": "@jupyter-widgets/controls",
|
1952 |
+
"_model_module_version": "1.5.0",
|
1953 |
+
"_model_name": "DescriptionStyleModel",
|
1954 |
+
"_view_count": null,
|
1955 |
+
"_view_module": "@jupyter-widgets/base",
|
1956 |
+
"_view_module_version": "1.2.0",
|
1957 |
+
"_view_name": "StyleView",
|
1958 |
+
"description_width": ""
|
1959 |
+
}
|
1960 |
+
}
|
1961 |
+
}
|
1962 |
+
}
|
1963 |
+
},
|
1964 |
+
"nbformat": 4,
|
1965 |
+
"nbformat_minor": 0
|
1966 |
+
}
|
requirements.in
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
polars
|
2 |
+
datasets
|
3 |
+
pandas
|
4 |
+
toolz
|
5 |
+
matplotlib
|
6 |
+
gradio
|
7 |
+
plotly
|
8 |
+
gradio
|
requirements.txt
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.11
|
3 |
+
# by the following command:
|
4 |
+
#
|
5 |
+
# pip-compile --resolver=backtracking requirements.in
|
6 |
+
#
|
7 |
+
aiofiles==23.1.0
|
8 |
+
# via gradio
|
9 |
+
aiohttp==3.8.4
|
10 |
+
# via
|
11 |
+
# datasets
|
12 |
+
# fsspec
|
13 |
+
# gradio
|
14 |
+
aiosignal==1.3.1
|
15 |
+
# via aiohttp
|
16 |
+
altair==4.2.2
|
17 |
+
# via gradio
|
18 |
+
anyio==3.6.2
|
19 |
+
# via
|
20 |
+
# httpcore
|
21 |
+
# starlette
|
22 |
+
async-timeout==4.0.2
|
23 |
+
# via aiohttp
|
24 |
+
attrs==22.2.0
|
25 |
+
# via
|
26 |
+
# aiohttp
|
27 |
+
# jsonschema
|
28 |
+
certifi==2022.12.7
|
29 |
+
# via
|
30 |
+
# httpcore
|
31 |
+
# httpx
|
32 |
+
# requests
|
33 |
+
charset-normalizer==3.1.0
|
34 |
+
# via
|
35 |
+
# aiohttp
|
36 |
+
# requests
|
37 |
+
click==8.1.3
|
38 |
+
# via uvicorn
|
39 |
+
contourpy==1.0.7
|
40 |
+
# via matplotlib
|
41 |
+
cycler==0.11.0
|
42 |
+
# via matplotlib
|
43 |
+
datasets==2.10.1
|
44 |
+
# via -r requirements.in
|
45 |
+
dill==0.3.6
|
46 |
+
# via
|
47 |
+
# datasets
|
48 |
+
# multiprocess
|
49 |
+
entrypoints==0.4
|
50 |
+
# via altair
|
51 |
+
fastapi==0.95.0
|
52 |
+
# via gradio
|
53 |
+
ffmpy==0.3.0
|
54 |
+
# via gradio
|
55 |
+
filelock==3.10.4
|
56 |
+
# via huggingface-hub
|
57 |
+
fonttools==4.39.2
|
58 |
+
# via matplotlib
|
59 |
+
frozenlist==1.3.3
|
60 |
+
# via
|
61 |
+
# aiohttp
|
62 |
+
# aiosignal
|
63 |
+
fsspec[http]==2023.3.0
|
64 |
+
# via
|
65 |
+
# datasets
|
66 |
+
# gradio
|
67 |
+
gradio==3.23.0
|
68 |
+
# via -r requirements.in
|
69 |
+
h11==0.14.0
|
70 |
+
# via
|
71 |
+
# httpcore
|
72 |
+
# uvicorn
|
73 |
+
httpcore==0.16.3
|
74 |
+
# via httpx
|
75 |
+
httpx==0.23.3
|
76 |
+
# via gradio
|
77 |
+
huggingface-hub==0.13.3
|
78 |
+
# via
|
79 |
+
# datasets
|
80 |
+
# gradio
|
81 |
+
idna==3.4
|
82 |
+
# via
|
83 |
+
# anyio
|
84 |
+
# requests
|
85 |
+
# rfc3986
|
86 |
+
# yarl
|
87 |
+
jinja2==3.1.2
|
88 |
+
# via
|
89 |
+
# altair
|
90 |
+
# gradio
|
91 |
+
jsonschema==4.17.3
|
92 |
+
# via altair
|
93 |
+
kiwisolver==1.4.4
|
94 |
+
# via matplotlib
|
95 |
+
linkify-it-py==2.0.0
|
96 |
+
# via markdown-it-py
|
97 |
+
markdown-it-py[linkify]==2.2.0
|
98 |
+
# via
|
99 |
+
# gradio
|
100 |
+
# mdit-py-plugins
|
101 |
+
markupsafe==2.1.2
|
102 |
+
# via
|
103 |
+
# gradio
|
104 |
+
# jinja2
|
105 |
+
matplotlib==3.7.1
|
106 |
+
# via
|
107 |
+
# -r requirements.in
|
108 |
+
# gradio
|
109 |
+
mdit-py-plugins==0.3.3
|
110 |
+
# via gradio
|
111 |
+
mdurl==0.1.2
|
112 |
+
# via markdown-it-py
|
113 |
+
multidict==6.0.4
|
114 |
+
# via
|
115 |
+
# aiohttp
|
116 |
+
# yarl
|
117 |
+
multiprocess==0.70.14
|
118 |
+
# via datasets
|
119 |
+
numpy==1.24.2
|
120 |
+
# via
|
121 |
+
# altair
|
122 |
+
# contourpy
|
123 |
+
# datasets
|
124 |
+
# gradio
|
125 |
+
# matplotlib
|
126 |
+
# pandas
|
127 |
+
# pyarrow
|
128 |
+
orjson==3.8.8
|
129 |
+
# via gradio
|
130 |
+
packaging==23.0
|
131 |
+
# via
|
132 |
+
# datasets
|
133 |
+
# huggingface-hub
|
134 |
+
# matplotlib
|
135 |
+
pandas==1.5.3
|
136 |
+
# via
|
137 |
+
# -r requirements.in
|
138 |
+
# altair
|
139 |
+
# datasets
|
140 |
+
# gradio
|
141 |
+
pillow==9.4.0
|
142 |
+
# via
|
143 |
+
# gradio
|
144 |
+
# matplotlib
|
145 |
+
plotly==5.13.1
|
146 |
+
# via -r requirements.in
|
147 |
+
polars==0.16.15
|
148 |
+
# via -r requirements.in
|
149 |
+
pyarrow==11.0.0
|
150 |
+
# via datasets
|
151 |
+
pydantic==1.10.7
|
152 |
+
# via
|
153 |
+
# fastapi
|
154 |
+
# gradio
|
155 |
+
pydub==0.25.1
|
156 |
+
# via gradio
|
157 |
+
pyparsing==3.0.9
|
158 |
+
# via matplotlib
|
159 |
+
pyrsistent==0.19.3
|
160 |
+
# via jsonschema
|
161 |
+
python-dateutil==2.8.2
|
162 |
+
# via
|
163 |
+
# matplotlib
|
164 |
+
# pandas
|
165 |
+
python-multipart==0.0.6
|
166 |
+
# via gradio
|
167 |
+
pytz==2022.7.1
|
168 |
+
# via pandas
|
169 |
+
pyyaml==6.0
|
170 |
+
# via
|
171 |
+
# datasets
|
172 |
+
# gradio
|
173 |
+
# huggingface-hub
|
174 |
+
requests==2.28.2
|
175 |
+
# via
|
176 |
+
# datasets
|
177 |
+
# fsspec
|
178 |
+
# gradio
|
179 |
+
# huggingface-hub
|
180 |
+
# responses
|
181 |
+
responses==0.18.0
|
182 |
+
# via datasets
|
183 |
+
rfc3986[idna2008]==1.5.0
|
184 |
+
# via httpx
|
185 |
+
semantic-version==2.10.0
|
186 |
+
# via gradio
|
187 |
+
six==1.16.0
|
188 |
+
# via python-dateutil
|
189 |
+
sniffio==1.3.0
|
190 |
+
# via
|
191 |
+
# anyio
|
192 |
+
# httpcore
|
193 |
+
# httpx
|
194 |
+
starlette==0.26.1
|
195 |
+
# via fastapi
|
196 |
+
tenacity==8.2.2
|
197 |
+
# via plotly
|
198 |
+
toolz==0.12.0
|
199 |
+
# via
|
200 |
+
# -r requirements.in
|
201 |
+
# altair
|
202 |
+
tqdm==4.65.0
|
203 |
+
# via
|
204 |
+
# datasets
|
205 |
+
# huggingface-hub
|
206 |
+
typing-extensions==4.5.0
|
207 |
+
# via
|
208 |
+
# gradio
|
209 |
+
# huggingface-hub
|
210 |
+
# pydantic
|
211 |
+
uc-micro-py==1.0.1
|
212 |
+
# via linkify-it-py
|
213 |
+
urllib3==1.26.15
|
214 |
+
# via
|
215 |
+
# requests
|
216 |
+
# responses
|
217 |
+
uvicorn==0.21.1
|
218 |
+
# via gradio
|
219 |
+
websockets==10.4
|
220 |
+
# via gradio
|
221 |
+
xxhash==3.2.0
|
222 |
+
# via datasets
|
223 |
+
yarl==1.8.2
|
224 |
+
# via aiohttp
|