{
"cells": [
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"id": "iNgLgZ27Dlq6"
},
"outputs": [],
"source": [
"from huggingface_hub import list_models, list_spaces\n",
"from pathlib import Path\n",
"from toolz import concat\n",
"from datasets import Dataset\n",
"import polars as pl\n",
"from datetime import date\n",
"from datetime import date, timedelta\n",
"from datasets import load_dataset\n",
"import plotly.express as px\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"HF_TOKEN = os.getenv(\"HF_TOKEN\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "mBMDThV4FA3m"
},
"outputs": [],
"source": [
"def yield_models():\n",
" for model in iter(list_models(full=True)):\n",
" yield \"model\", model"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "hDqiwFD3uTR8"
},
"outputs": [],
"source": [
"def yield_spaces():\n",
" for space in iter(list_spaces(full=True)):\n",
" yield \"space\", space"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "mZEhftoNFHGN"
},
"outputs": [],
"source": [
"def yield_notebooks():\n",
" for repo_type, repo in concat([yield_models(), yield_spaces()]):\n",
" files = (f.rfilename for f in repo.siblings)\n",
" if jupyter_notebook := [f for f in files if Path(f).suffix == \".ipynb\"]:\n",
" yield {\n",
" \"date\": date.today(),\n",
" \"repo_type\": repo_type,\n",
" \"repo_id\": repo.id,\n",
" \"repo_notebook_count\": len(jupyter_notebook),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"df = pl.LazyFrame(yield_notebooks())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"df = (\n",
" df.with_columns(pl.col(\"repo_id\").str.split_exact(\"/\", 1))\n",
" .unnest(\"repo_id\")\n",
" .rename({\"field_0\": \"user\", \"field_1\": \"repo_id\"})\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"by_user_count = (\n",
" df.groupby(\"user\")\n",
" .agg(pl.col(\"repo_notebook_count\").sum())\n",
" .sort(\"repo_notebook_count\", descending=True)\n",
" .collect()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
shape: (1540, 2)user | repo_notebook_count |
---|
str | i64 |
"gradio-pr-depl… | 1798 |
"gradio" | 414 |
"sgoodfriend" | 240 |
"merve" | 63 |
"chrisjay" | 62 |
"infinitejoy" | 32 |
"fabricius" | 29 |
"aammari" | 26 |
"flax-community… | 24 |
"rajesh1729" | 24 |
"gabri14el" | 23 |
"srush" | 23 |
… | … |
"fredbrito" | 1 |
"JimmyLee08" | 1 |
"BenjaminFraser… | 1 |
"MRamzam" | 1 |
"Deepak107" | 1 |
"ozyman" | 1 |
"ELIA" | 1 |
"zaidmukaddam" | 1 |
"Jack003" | 1 |
"SiddhantOjha" | 1 |
"lowrollr" | 1 |
"edwardpraveen" | 1 |
"
],
"text/plain": [
"shape: (1540, 2)\n",
"┌───────────────────┬─────────────────────┐\n",
"│ user ┆ repo_notebook_count │\n",
"│ --- ┆ --- │\n",
"│ str ┆ i64 │\n",
"╞═══════════════════╪═════════════════════╡\n",
"│ gradio-pr-deploys ┆ 1798 │\n",
"│ gradio ┆ 414 │\n",
"│ sgoodfriend ┆ 240 │\n",
"│ merve ┆ 63 │\n",
"│ … ┆ … │\n",
"│ Jack003 ┆ 1 │\n",
"│ SiddhantOjha ┆ 1 │\n",
"│ lowrollr ┆ 1 │\n",
"│ edwardpraveen ┆ 1 │\n",
"└───────────────────┴─────────────────────┘"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"by_user_count"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (7, 3)describe | user | repo_notebook_count |
---|
str | str | f64 |
"count" | "1540" | 1540.0 |
"null_count" | "0" | 0.0 |
"mean" | null | 3.787013 |
"std" | null | 47.455407 |
"min" | "007aneesh" | 1.0 |
"max" | "zinoubm" | 1798.0 |
"median" | null | 1.0 |
"
],
"text/plain": [
"shape: (7, 3)\n",
"┌────────────┬───────────┬─────────────────────┐\n",
"│ describe ┆ user ┆ repo_notebook_count │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ str ┆ f64 │\n",
"╞════════════╪═══════════╪═════════════════════╡\n",
"│ count ┆ 1540 ┆ 1540.0 │\n",
"│ null_count ┆ 0 ┆ 0.0 │\n",
"│ mean ┆ null ┆ 3.787013 │\n",
"│ std ┆ null ┆ 47.455407 │\n",
"│ min ┆ 007aneesh ┆ 1.0 │\n",
"│ max ┆ zinoubm ┆ 1798.0 │\n",
"│ median ┆ null ┆ 1.0 │\n",
"└────────────┴───────────┴─────────────────────┘"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"by_user_count.describe()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (1, 1)mean notebooks per user |
---|
f64 |
3.787013 |
"
],
"text/plain": [
"shape: (1, 1)\n",
"┌──────────────────────────┐\n",
"│ mean notebooks per user │\n",
"│ --- │\n",
"│ f64 │\n",
"╞══════════════════════════╡\n",
"│ 3.787013 │\n",
"└──────────────────────────┘"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"by_user_count.mean().select(\n",
" pl.col(\"repo_notebook_count\").alias(\"mean notebooks per user\")\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['user', 'repo_notebook_count'],\n",
" num_rows: 1540\n",
"})"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds = Dataset(by_user_count.to_arrow())\n",
"ds"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Creating parquet from Arrow format: 100%|██████████| 2/2 [00:00<00:00, 617.08ba/s]\n",
"Upload 1 LFS files: 100%|██████████| 1/1 [00:00<00:00, 1.05it/s]\n",
"Pushing dataset shards to the dataset hub: 100%|██████████| 1/1 [00:02<00:00, 2.39s/it]\n",
"Deleting unused files from dataset repository: 100%|██████████| 1/1 [00:00<00:00, 2.01it/s]\n",
"Downloading metadata: 100%|██████████| 406/406 [00:00<00:00, 126kB/s]\n",
"Updating downloaded metadata with the new split.\n"
]
}
],
"source": [
"ds.push_to_hub(\"davanstrien/notebooks_by_user\", token=HF_TOKEN)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"id": "h6AaHRSCV397"
},
"outputs": [],
"source": [
"grouped = df.groupby(\"repo_type\").agg(pl.col(\"repo_notebook_count\").sum())"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (2, 3)repo_type | repo_notebook_count | date |
---|
str | i64 | date |
"space" | 4443 | 2023-03-30 |
"model" | 1389 | 2023-03-30 |
"
],
"text/plain": [
"shape: (2, 3)\n",
"┌───────────┬─────────────────────┬────────────┐\n",
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ i64 ┆ date │\n",
"╞═══════════╪═════════════════════╪════════════╡\n",
"│ space ┆ 4443 ┆ 2023-03-30 │\n",
"│ model ┆ 1389 ┆ 2023-03-30 │\n",
"└───────────┴─────────────────────┴────────────┘"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final_df = grouped.with_columns(pl.lit(date.today()).alias(\"date\")).collect()\n",
"final_df"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading readme: 100%|██████████| 441/441 [00:00<00:00, 130kB/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset None/None to /Users/davanstrien/.cache/huggingface/datasets/davanstrien___parquet/davanstrien--notebooks_by_repo_type-1004c11b0535dac5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|██████████| 1.87k/1.87k [00:00<00:00, 705kB/s]\n",
"Downloading data files: 100%|██████████| 1/1 [00:01<00:00, 1.71s/it]\n",
"Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 786.78it/s]\n",
" "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset parquet downloaded and prepared to /Users/davanstrien/.cache/huggingface/datasets/davanstrien___parquet/davanstrien--notebooks_by_repo_type-1004c11b0535dac5/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r"
]
},
{
"data": {
"text/html": [
"\n",
"
shape: (7, 3)repo_type | repo_notebook_count | date |
---|
str | i64 | date |
"space" | 3956 | 2023-03-27 |
"model" | 1346 | 2023-03-27 |
"model" | 1348 | 2023-03-28 |
"space" | 4386 | 2023-03-28 |
"space" | 4422 | 2023-03-28 |
"space" | 4579 | 2023-03-29 |
"model" | 1384 | 2023-03-29 |
"
],
"text/plain": [
"shape: (7, 3)\n",
"┌───────────┬─────────────────────┬────────────┐\n",
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ i64 ┆ date │\n",
"╞═══════════╪═════════════════════╪════════════╡\n",
"│ space ┆ 3956 ┆ 2023-03-27 │\n",
"│ model ┆ 1346 ┆ 2023-03-27 │\n",
"│ model ┆ 1348 ┆ 2023-03-28 │\n",
"│ space ┆ 4386 ┆ 2023-03-28 │\n",
"│ space ┆ 4422 ┆ 2023-03-28 │\n",
"│ space ┆ 4579 ┆ 2023-03-29 │\n",
"│ model ┆ 1384 ┆ 2023-03-29 │\n",
"└───────────┴─────────────────────┴────────────┘"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"previous_df = pl.DataFrame(\n",
" load_dataset(\"davanstrien/notebooks_by_repo_type\", split=\"train\").data.table\n",
")\n",
"previous_df"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"final_df = pl.concat([previous_df, final_df]).unique()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"spaces = final_df.filter(pl.col(\"repo_type\") == \"space\").unique(subset=[\"date\"])\n",
"models = final_df.filter(pl.col(\"repo_type\") == \"model\").unique(subset=[\"date\"])"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"final_df = pl.concat([spaces, models]).unique()"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (8, 3)repo_type | repo_notebook_count | date |
---|
str | i64 | date |
"space" | 3956 | 2023-03-27 |
"model" | 1346 | 2023-03-27 |
"space" | 4386 | 2023-03-28 |
"model" | 1348 | 2023-03-28 |
"space" | 4579 | 2023-03-29 |
"model" | 1384 | 2023-03-29 |
"space" | 4443 | 2023-03-30 |
"model" | 1389 | 2023-03-30 |
"
],
"text/plain": [
"shape: (8, 3)\n",
"┌───────────┬─────────────────────┬────────────┐\n",
"│ repo_type ┆ repo_notebook_count ┆ date │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ i64 ┆ date │\n",
"╞═══════════╪═════════════════════╪════════════╡\n",
"│ space ┆ 3956 ┆ 2023-03-27 │\n",
"│ model ┆ 1346 ┆ 2023-03-27 │\n",
"│ space ┆ 4386 ┆ 2023-03-28 │\n",
"│ model ┆ 1348 ┆ 2023-03-28 │\n",
"│ space ┆ 4579 ┆ 2023-03-29 │\n",
"│ model ┆ 1384 ┆ 2023-03-29 │\n",
"│ space ┆ 4443 ┆ 2023-03-30 │\n",
"│ model ┆ 1389 ┆ 2023-03-30 │\n",
"└───────────┴─────────────────────┴────────────┘"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final_df = final_df.sort(\"date\")\n",
"final_df"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final_df.groupby(\"repo_type\")"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Creating parquet from Arrow format: 100%|██████████| 1/1 [00:00<00:00, 730.46ba/s]\n",
"Upload 1 LFS files: 100%|██████████| 1/1 [00:00<00:00, 1.26it/s]\n",
"Pushing dataset shards to the dataset hub: 100%|██████████| 1/1 [00:02<00:00, 2.14s/it]\n",
"Deleting unused files from dataset repository: 100%|██████████| 1/1 [00:00<00:00, 1.87it/s]\n",
"Downloading metadata: 100%|██████████| 441/441 [00:00<00:00, 173kB/s]\n",
"Updating downloaded metadata with the new split.\n"
]
}
],
"source": [
"Dataset(final_df.to_arrow()).push_to_hub(\n",
" \"davanstrien/notebooks_by_repo_type\", token=HF_TOKEN\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 224
},
"id": "T3vhuLpgdyKh",
"outputId": "82a58845-ec9f-40d7-cbad-abddf7ad467a"
},
"outputs": [],
"source": [
"final_df = final_df.sort(\"date\")\n",
"pandas_df = final_df.to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" repo_type | \n",
" repo_notebook_count | \n",
"
\n",
" \n",
" date | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2023-03-27 | \n",
" space | \n",
" 3956 | \n",
"
\n",
" \n",
" 2023-03-27 | \n",
" model | \n",
" 1346 | \n",
"
\n",
" \n",
" 2023-03-28 | \n",
" space | \n",
" 4386 | \n",
"
\n",
" \n",
" 2023-03-28 | \n",
" model | \n",
" 1348 | \n",
"
\n",
" \n",
" 2023-03-29 | \n",
" space | \n",
" 4579 | \n",
"
\n",
" \n",
" 2023-03-29 | \n",
" model | \n",
" 1384 | \n",
"
\n",
" \n",
" 2023-03-30 | \n",
" space | \n",
" 4443 | \n",
"
\n",
" \n",
" 2023-03-30 | \n",
" model | \n",
" 1389 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" repo_type repo_notebook_count\n",
"date \n",
"2023-03-27 space 3956\n",
"2023-03-27 model 1346\n",
"2023-03-28 space 4386\n",
"2023-03-28 model 1348\n",
"2023-03-29 space 4579\n",
"2023-03-29 model 1384\n",
"2023-03-30 space 4443\n",
"2023-03-30 model 1389"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# final_df.to_pandas().set_index(\"date\", drop=True).sort_index()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "repo_type=space
date=%{x}
repo_notebook_count=%{y}",
"legendgroup": "space",
"line": {
"color": "#636efa",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "space",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
"2023-03-27T00:00:00",
"2023-03-28T00:00:00",
"2023-03-29T00:00:00",
"2023-03-30T00:00:00"
],
"xaxis": "x",
"y": [
3956,
4386,
4579,
4443
],
"yaxis": "y"
},
{
"hovertemplate": "repo_type=model
date=%{x}
repo_notebook_count=%{y}",
"legendgroup": "model",
"line": {
"color": "#EF553B",
"dash": "solid"
},
"marker": {
"symbol": "circle"
},
"mode": "lines",
"name": "model",
"orientation": "v",
"showlegend": true,
"type": "scatter",
"x": [
"2023-03-27T00:00:00",
"2023-03-28T00:00:00",
"2023-03-29T00:00:00",
"2023-03-30T00:00:00"
],
"xaxis": "x",
"y": [
1346,
1348,
1384,
1389
],
"yaxis": "y"
}
],
"layout": {
"legend": {
"title": {
"text": "repo_type"
},
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"title": {
"text": "date"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"title": {
"text": "repo_notebook_count"
}
}
}
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"px.line(pandas_df, x=\"date\", y=\"repo_notebook_count\", color=\"repo_type\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "scratchpad",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0b7aa472a433465bbe03d9f5a596d07c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_590d7059bf1e4c5285ca40e5298b7ee7",
"IPY_MODEL_a82a83de315c43f6b7f9fa787227b2e3",
"IPY_MODEL_4f66bea4e3ce4f508a407788729c958e"
],
"layout": "IPY_MODEL_190d66e96c4b427e998fc412dd2bbd7b"
}
},
"190d66e96c4b427e998fc412dd2bbd7b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"266a59ce352c4a65aea3c6e8402ac1ed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4c31add106194a728e308ed486fc2e54": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4f66bea4e3ce4f508a407788729c958e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_266a59ce352c4a65aea3c6e8402ac1ed",
"placeholder": "",
"style": "IPY_MODEL_c28bf5f9ac624739a48d62510d3bb05d",
"value": " 2490/0 [02:11<00:00, 236.08 examples/s]"
}
},
"590d7059bf1e4c5285ca40e5298b7ee7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_711a5f5d14ac4af180b54954e814f394",
"placeholder": "",
"style": "IPY_MODEL_605acdd7a4cb4f118951fc79933f62f6",
"value": "Generating train split: "
}
},
"605acdd7a4cb4f118951fc79933f62f6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"711a5f5d14ac4af180b54954e814f394": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a82a83de315c43f6b7f9fa787227b2e3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c13a0581f0ff46c4a399627cd8aa1c0c",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4c31add106194a728e308ed486fc2e54",
"value": 1
}
},
"c13a0581f0ff46c4a399627cd8aa1c0c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": "20px"
}
},
"c28bf5f9ac624739a48d62510d3bb05d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}