Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
e1b1045
1
Parent(s):
bf47208
Refactor OCR model initialization and prediction handling for improved error reporting and message formatting
Browse files
app.py
CHANGED
@@ -6,11 +6,20 @@ import torch
|
|
6 |
from transformers import AutoProcessor, AutoModelForImageTextToText, pipeline
|
7 |
import spaces
|
8 |
|
9 |
-
# --- Global Model and Processor
|
10 |
HF_PROCESSOR = None
|
11 |
HF_MODEL = None
|
12 |
HF_PIPE = None
|
13 |
-
MODEL_LOAD_ERROR_MSG = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# --- Helper Functions ---
|
16 |
|
@@ -59,36 +68,28 @@ def parse_alto_xml_for_text(xml_file_path):
|
|
59 |
except Exception as e:
|
60 |
return f"An unexpected error occurred during XML parsing: {e}"
|
61 |
|
62 |
-
@spaces.GPU
|
63 |
def predict(pil_image):
|
64 |
-
"""Performs OCR prediction using the Hugging Face model
|
65 |
-
global
|
66 |
-
|
67 |
-
if HF_PIPE is None and MODEL_LOAD_ERROR_MSG is None:
|
68 |
-
try:
|
69 |
-
print("Attempting to load Hugging Face model and processor within @spaces.GPU context...")
|
70 |
-
HF_PROCESSOR = AutoProcessor.from_pretrained("reducto/RolmOCR")
|
71 |
-
HF_MODEL = AutoModelForImageTextToText.from_pretrained(
|
72 |
-
"reducto/RolmOCR",
|
73 |
-
torch_dtype=torch.bfloat16,
|
74 |
-
device_map="auto" # Should utilize ZeroGPU correctly here
|
75 |
-
)
|
76 |
-
HF_PIPE = pipeline("image-text-to-text", model=HF_MODEL, processor=HF_PROCESSOR)
|
77 |
-
print("Hugging Face OCR model loaded successfully.")
|
78 |
-
except Exception as e:
|
79 |
-
MODEL_LOAD_ERROR_MSG = f"Error loading Hugging Face model: {str(e)}"
|
80 |
-
print(MODEL_LOAD_ERROR_MSG)
|
81 |
-
# HF_PIPE remains None, error message is stored
|
82 |
|
83 |
if HF_PIPE is None:
|
84 |
error_to_report = MODEL_LOAD_ERROR_MSG if MODEL_LOAD_ERROR_MSG else "OCR model could not be initialized."
|
85 |
raise RuntimeError(error_to_report)
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def run_hf_ocr(image_path):
|
94 |
"""
|
|
|
6 |
from transformers import AutoProcessor, AutoModelForImageTextToText, pipeline
|
7 |
import spaces
|
8 |
|
9 |
+
# --- Global Model and Processor ---
|
10 |
HF_PROCESSOR = None
|
11 |
HF_MODEL = None
|
12 |
HF_PIPE = None
|
13 |
+
MODEL_LOAD_ERROR_MSG = None
|
14 |
+
|
15 |
+
HF_PROCESSOR = AutoProcessor.from_pretrained("reducto/RolmOCR")
|
16 |
+
HF_MODEL = AutoModelForImageTextToText.from_pretrained(
|
17 |
+
"reducto/RolmOCR",
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto"
|
20 |
+
)
|
21 |
+
HF_PIPE = pipeline("image-text-to-text", model=HF_MODEL, processor=HF_PROCESSOR)
|
22 |
+
|
23 |
|
24 |
# --- Helper Functions ---
|
25 |
|
|
|
68 |
except Exception as e:
|
69 |
return f"An unexpected error occurred during XML parsing: {e}"
|
70 |
|
71 |
+
@spaces.GPU
|
72 |
def predict(pil_image):
|
73 |
+
"""Performs OCR prediction using the Hugging Face model."""
|
74 |
+
global HF_PIPE, MODEL_LOAD_ERROR_MSG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
if HF_PIPE is None:
|
77 |
error_to_report = MODEL_LOAD_ERROR_MSG if MODEL_LOAD_ERROR_MSG else "OCR model could not be initialized."
|
78 |
raise RuntimeError(error_to_report)
|
79 |
|
80 |
+
# Format the message in the expected structure
|
81 |
+
messages = [
|
82 |
+
{
|
83 |
+
"role": "user",
|
84 |
+
"content": [
|
85 |
+
{"type": "image", "image": pil_image},
|
86 |
+
{"type": "text", "text": "Return the plain text representation of this document as if you were reading it naturally.\n"}
|
87 |
+
]
|
88 |
+
}
|
89 |
+
]
|
90 |
+
|
91 |
+
# Use the pipeline with the properly formatted messages
|
92 |
+
return HF_PIPE(messages)
|
93 |
|
94 |
def run_hf_ocr(image_path):
|
95 |
"""
|