Atualizando app.py
Browse files
app.py
CHANGED
|
@@ -1,42 +1,53 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
from tensorflow.keras.models import load_model
|
| 4 |
-
from huggingface_hub import hf_hub_download
|
| 5 |
-
import pickle
|
| 6 |
-
from PIL import Image
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
with
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tensorflow.keras.models import load_model
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
import pickle
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import zipfile
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Repositório no Hugging Face
|
| 11 |
+
repo_id = "davebraga/wrdbTI6"
|
| 12 |
+
|
| 13 |
+
# Baixar o modelo compactado
|
| 14 |
+
model_zip_path = hf_hub_download(repo_id, "saved_model.zip")
|
| 15 |
+
|
| 16 |
+
# Descompactar o modelo se ainda não existir
|
| 17 |
+
if not os.path.exists("saved_model"):
|
| 18 |
+
with zipfile.ZipFile(model_zip_path, 'r') as zip_ref:
|
| 19 |
+
zip_ref.extractall("saved_model")
|
| 20 |
+
|
| 21 |
+
# Baixar os encoders
|
| 22 |
+
category_encoder_path = hf_hub_download(repo_id, "category_encoder.pkl")
|
| 23 |
+
color_encoder_path = hf_hub_download(repo_id, "color_encoder.pkl")
|
| 24 |
+
|
| 25 |
+
# Carregar modelo e encoders
|
| 26 |
+
model = load_model("saved_model")
|
| 27 |
+
with open(category_encoder_path, "rb") as f:
|
| 28 |
+
category_encoder = pickle.load(f)
|
| 29 |
+
with open(color_encoder_path, "rb") as f:
|
| 30 |
+
color_encoder = pickle.load(f)
|
| 31 |
+
|
| 32 |
+
# Função de previsão
|
| 33 |
+
def predict(image):
|
| 34 |
+
image = image.resize((160, 160))
|
| 35 |
+
image_array = np.array(image) / 255.0
|
| 36 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 37 |
+
|
| 38 |
+
category_pred, color_pred = model.predict(image_array)
|
| 39 |
+
category = category_encoder.inverse_transform([np.argmax(category_pred)])[0]
|
| 40 |
+
color = color_encoder.inverse_transform([np.argmax(color_pred)])[0]
|
| 41 |
+
|
| 42 |
+
return f"Categoria: {category}", f"Cor: {color}"
|
| 43 |
+
|
| 44 |
+
# Interface Gradio
|
| 45 |
+
iface = gr.Interface(
|
| 46 |
+
fn=predict,
|
| 47 |
+
inputs=gr.Image(type="pil"),
|
| 48 |
+
outputs=["text", "text"],
|
| 49 |
+
title="Classificador de Categoria e Cor",
|
| 50 |
+
description="Faça upload de uma imagem de uma peça de roupa para prever a categoria e a cor."
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
iface.launch()
|