davebraga commited on
Commit
be92199
·
verified ·
1 Parent(s): 04fbd93

Adicionando arquivos

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ trained_model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from tensorflow.keras.models import load_model
4
+ from huggingface_hub import hf_hub_download
5
+ import pickle
6
+ from PIL import Image
7
+
8
+ # Baixar os arquivos
9
+ repo_id = "davebraga/wrdbTI6"
10
+ model_path = hf_hub_download(repo_id, "trained_model.keras")
11
+ category_encoder_path = hf_hub_download(repo_id, "category_encoder.pkl")
12
+ color_encoder_path = hf_hub_download(repo_id, "color_encoder.pkl")
13
+
14
+ # Carregar modelo e encoders
15
+ model = load_model(model_path)
16
+ with open(category_encoder_path, "rb") as f:
17
+ category_encoder = pickle.load(f)
18
+ with open(color_encoder_path, "rb") as f:
19
+ color_encoder = pickle.load(f)
20
+
21
+ # Previsão
22
+ def predict(image):
23
+ image = image.resize((160, 160))
24
+ image_array = np.array(image) / 255.0
25
+ image_array = np.expand_dims(image_array, axis=0)
26
+
27
+ category_pred, color_pred = model.predict(image_array)
28
+ category = category_encoder.inverse_transform([np.argmax(category_pred)])[0]
29
+ color = color_encoder.inverse_transform([np.argmax(color_pred)])[0]
30
+
31
+ return f"Categoria: {category}", f"Cor: {color}"
32
+
33
+ # Interface
34
+ iface = gr.Interface(
35
+ fn=predict,
36
+ inputs=gr.Image(type="pil"),
37
+ outputs=["text", "text"],
38
+ title="Classificador de Categoria e Cor",
39
+ description="Faça upload de uma imagem de uma peça de roupa para prever a categoria e a cor."
40
+ )
41
+
42
+ iface.launch()
category_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f99e3adb1f6ef591417646730181cb5170c89248e0eb9094dbbd5958dd292d3
3
+ size 1280
color_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4432d811f63ada3387ab0891bc83982524c5b82cd69ea9b512fc3ce1fac3fd7
3
+ size 639
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pandas
2
+ numpy
3
+ matplotlib
4
+ seaborn
5
+ tensorflow==2.14.0
6
+ opencv-python
7
+ scikit-learn
8
+ fastapi
9
+ uvicorn
10
+ python-multipart
11
+ opencv-python
trained_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:276bdb759587874e7b36d8307ba3d9c7e01d2744e321e6c69f26cace4ff22cc7
3
+ size 51228499