import gradio as gr import numpy as np from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download import pickle from PIL import Image import zipfile import os # Pega o token do Hugging Face da variável de ambiente hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") # Repositório no Hugging Face repo_id = "davebraga/wrdbTI6" # Baixar o modelo compactado com autenticação model_zip_path = hf_hub_download(repo_id, "saved_model.zip", token=hf_token) # Diretório onde o modelo será extraído extract_dir = "saved_model" # Descompactar o modelo se ainda não existir if not os.path.exists(extract_dir): with zipfile.ZipFile(model_zip_path, 'r') as zip_ref: zip_ref.extractall(extract_dir) # Baixar os encoders com autenticação category_encoder_path = hf_hub_download(repo_id, "category_encoder.pkl", token=hf_token) color_encoder_path = hf_hub_download(repo_id, "color_encoder.pkl", token=hf_token) # Carregar modelo e encoders model = load_model(extract_dir) with open(category_encoder_path, "rb") as f: category_encoder = pickle.load(f) with open(color_encoder_path, "rb") as f: color_encoder = pickle.load(f) # Função de previsão def predict(image: Image.Image): image = image.resize((160, 160)) image_array = np.array(image) / 255.0 image_array = np.expand_dims(image_array, axis=0) category_pred, color_pred = model.predict(image_array) category = category_encoder.inverse_transform([np.argmax(category_pred)])[0] color = color_encoder.inverse_transform([np.argmax(color_pred)])[0] return f"Categoria: {category}", f"Cor: {color}" # Interface Gradio iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=["text", "text"], title="Classificador de Categoria e Cor", description="Faça upload de uma imagem de uma peça de roupa para prever a categoria e a cor." ) iface.launch()