david-oplatka commited on
Commit
e763e8a
·
verified ·
1 Parent(s): fbc28f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -42
app.py CHANGED
@@ -1,61 +1,60 @@
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
  """
43
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
  """
45
  demo = gr.ChatInterface(
46
  respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
 
 
1
+ from omegaconf import OmegaConf
2
+ from query import VectaraQuery
3
+ import os
4
+
5
+ from PIL import Image
6
  import gradio as gr
7
  from huggingface_hub import InferenceClient
8
 
9
+ # """
10
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
11
+ # """
12
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
13
+
14
+
15
+ # def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
16
+ # messages = [{"role": "system", "content": system_message}]
17
+
18
+ # for val in history:
19
+ # if val[0]:
20
+ # messages.append({"role": "user", "content": val[0]})
21
+ # if val[1]:
22
+ # messages.append({"role": "assistant", "content": val[1]})
23
+
24
+ # messages.append({"role": "user", "content": message})
25
 
26
+ # response = ""
27
 
28
+ # for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
29
+ # token = message.choices[0].delta.content
 
 
 
 
 
 
 
30
 
31
+ # response += token
32
+ # yield response
 
 
 
33
 
34
+ corpus_ids = str(os.environ['corpus_ids']).split(',')
35
+ cfg = OmegaConf.create({
36
+ 'customer_id': str(os.environ['customer_id']),
37
+ 'corpus_ids': corpus_ids,
38
+ 'api_key': str(os.environ['api_key']),
39
+ 'title': os.environ['title'],
40
+ 'description': os.environ['description'],
41
+ 'source_data_desc': os.environ['source_data_desc'],
42
+ 'streaming': isTrue(os.environ.get('streaming', False)),
43
+ 'prompt_name': os.environ.get('prompt_name', None)
44
+ })
45
 
46
+ def random_fun(message, history):
47
+ return message + '!'
48
 
 
 
 
 
 
 
 
 
49
 
50
+ demo = gr.ChatInterface(random_fun, title = cfg.title, description = cfg.description)
 
51
 
52
  """
53
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
54
  """
55
  demo = gr.ChatInterface(
56
  respond,
57
+
 
 
 
 
 
 
 
 
 
 
 
58
  )
59
 
60