File size: 6,267 Bytes
602010e
8140d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602010e
 
b1558e3
8140d5a
 
 
 
 
 
e102b08
 
8140d5a
e102b08
2bb4d5a
94ccb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1558e3
8140d5a
602010e
 
94ccb47
 
 
 
8140d5a
 
 
 
1ceaf3e
15bd5c0
b1558e3
 
 
 
1ceaf3e
b1558e3
 
 
1ceaf3e
 
 
15bd5c0
 
 
 
fb4e39c
 
 
 
 
 
 
 
 
 
 
15bd5c0
 
 
 
000548f
15bd5c0
 
 
 
 
 
 
 
 
 
fb8294c
15bd5c0
 
 
 
 
 
fb4e39c
15bd5c0
ed7e400
602010e
a16489c
 
 
 
 
 
 
 
 
 
 
 
602010e
15bd5c0
 
20ff6a1
 
 
 
 
 
15bd5c0
 
 
 
 
 
 
 
 
 
 
 
 
50a8e40
15bd5c0
 
fb4e39c
 
fb8294c
15bd5c0
 
 
 
 
 
 
 
 
 
000548f
15bd5c0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

# import gc

# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM, HqqConfig

# quant_config = HqqConfig(nbits=8, group_size=64)

# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# print("Loading tokenizer & model…")
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)

# model =\
#         AutoModelForCausalLM\
#                 .from_pretrained(
#                         MODEL_ID, 
#                         torch_dtype=torch.float16, 
#                         # device_map="cuda", 
#                         quantization_config=quant_config
#         ).to(DEVICE)

#gc.collect()

#########

import gc

import gradio as gr
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
from optimum.onnxruntime.configuration import AutoQuantizationConfig

MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"



tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)

# print("Creating quant config")
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
# print("Creating quant config successful")

# print("Creating quantizer")
# quantizer = ORTQuantizer.from_pretrained(model)
# print("Creating quantizer successful")
# # Step 4: Perform quantization saving output in a new directory
# quantized_model_dir = "./quantized_model"
# print("Starting quantization...")
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
# print("Quantization was successful. Garbage collecting...")

# del(quantizer)
# del(qconfig)
# del(model)

# Run garbage collection again to release memory from quantizer objects
gc.collect()

# # Step 5: Load the quantized ONNX model for inference
# print("Loading quantized ONNX model for inference...")
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
# print("Loading model was succcessful. Garbage collecting.")

# Garbage collection again after final loading
gc.collect()

#########

# print("Loading tokenizer & model…")
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM

# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = ORTModelForCausalLM.from_pretrained(MODEL_ID, export=True, quantize=True)

#########


# -------------------------------------------------
# Optional tool(s)
# -------------------------------------------------
# TOOLS = [{
#     "name": "get_weather",
#     "description": "Get the current weather in a given city",
#     "parameters": {
#         "type": "object",
#         "properties": {
#             "city": {"type": "string", "description": "City name"}
#         },
#         "required": ["city"]
#     }
# }]

# -------------------------------------------------
# Helpers
# -------------------------------------------------

def build_messages(history, enable_thinking: bool):
    """Convert Gradio history to the chat template."""
    messages = []
    for h in history:
        messages.append({"role": h["role"], "content": h["content"]})
    # Add system instruction for mode
    system_flag = "/think" if enable_thinking else "/no_think"
    messages.insert(0, {"role": "system", "content": system_flag})
    return messages

def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_penalty, max_new_tokens):
    """Generate a streaming response."""
    messages = build_messages(history, enable_thinking)
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        # xml_tools=TOOLS
    )
    inputs = tokenizer(text, return_tensors="pt")
    gc.collect()
    with torch.inference_mode():
        streamer = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            pad_token_id=tokenizer.eos_token_id,
            streamer=None          # we'll yield manually
        )
    gc.collect()
    output_ids = streamer[0][len(inputs.input_ids[0]):]
    response = tokenizer.decode(output_ids, skip_special_tokens=True)
    if isinstance(response, str): 
        response = response.replace('<think>',"# &lt;think&gt;").replace('</think>',"&lt;/think&gt;")
    elif isinstance(response,list):
        response = [paper.replace('<think>',"# &lt;think&gt;").replace('</think>',"&lt;/think&gt;") for paper in response]
    else:
        raise ValueError("Tokenizer response seems malformed; Not a string, nor a list?!?!")

    # streaming char-by-char
    history.append({"role": "assistant", "content": ""})
    for ch in response:
        history[-1]["content"] += ch
        yield history

# -------------------------------------------------
# Blocks UI
# -------------------------------------------------
with gr.Blocks(title="SmolLM3-3B Chat") as demo:
    gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
    with gr.Row():
        enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
        temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
        top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
        top_k = gr.Slider(1,40,value=20,label="Top_k")
        repetition_penalty = gr.Slider(1.0,1.4,value=1.1,label="Repetition_Penalty")
        max_new_tokens = gr.Slider(1000,32768,value=32768,label="Max_New_Tokens")
    chatbot = gr.Chatbot(type="messages")
    msg = gr.Textbox(placeholder="Type your message here…", lines=1)
    clear = gr.Button("Clear")

    def user_fn(user_msg, history):
        return "", history + [{"role": "user", "content": user_msg}]

    msg.submit(
        user_fn, [msg, chatbot], [msg, chatbot], queue=False
    ).then(
        chat_fn, [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue().launch()