Spaces:
Build error
Build error
Update app.py
Browse filesTry using TorchAO for quantization...
app.py
CHANGED
@@ -3,16 +3,16 @@ import gc
|
|
3 |
|
4 |
import gradio as gr
|
5 |
# import torch
|
6 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
-
# # quant_config = HqqConfig(nbits=8, group_size=64)
|
9 |
|
10 |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
11 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
# print("Loading tokenizer & model…")
|
14 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
-
# # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
16 |
|
17 |
# model =\
|
18 |
# AutoModelForCausalLM\
|
@@ -23,18 +23,38 @@ import gradio as gr
|
|
23 |
# # quantization_config=quant_config
|
24 |
# ).to(DEVICE)
|
25 |
|
26 |
-
#gc.collect()
|
27 |
|
28 |
#########
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
#########
|
39 |
|
40 |
# import gc
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
# import torch
|
6 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig
|
7 |
|
8 |
+
# # # quant_config = HqqConfig(nbits=8, group_size=64)
|
9 |
|
10 |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
11 |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
# print("Loading tokenizer & model…")
|
14 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
+
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
16 |
|
17 |
# model =\
|
18 |
# AutoModelForCausalLM\
|
|
|
23 |
# # quantization_config=quant_config
|
24 |
# ).to(DEVICE)
|
25 |
|
26 |
+
# gc.collect()
|
27 |
|
28 |
#########
|
29 |
|
30 |
+
import torch
|
31 |
+
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
32 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig
|
33 |
+
# quant_config = Float8WeightOnlyConfig()
|
34 |
+
quant_config = Float8DynamicActivationFloat8WeightConfig()
|
35 |
+
quantization_config = TorchAoConfig(quant_type=quant_config)
|
36 |
+
|
37 |
+
MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
40 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
MODEL_ID,
|
42 |
+
torch_dtype="auto",
|
43 |
+
device_map="auto",
|
44 |
+
quantization_config=quantization_config
|
45 |
)
|
46 |
|
47 |
+
|
48 |
+
#########
|
49 |
+
|
50 |
+
# from unsloth import FastLanguageModel
|
51 |
+
|
52 |
+
# model, tokenizer = FastLanguageModel.from_pretrained(
|
53 |
+
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
|
54 |
+
# max_seq_length=128_000,
|
55 |
+
# load_in_4bit=True
|
56 |
+
# )
|
57 |
+
|
58 |
#########
|
59 |
|
60 |
# import gc
|