Spaces:
Build error
Build error
Update app.py
Browse filesRevert ONNX quantization attempt...
app.py
CHANGED
@@ -1,45 +1,45 @@
|
|
1 |
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
|
26 |
#gc.collect()
|
27 |
|
28 |
#########
|
29 |
|
30 |
-
import gc
|
31 |
|
32 |
-
import gradio as gr
|
33 |
-
from transformers import AutoTokenizer
|
34 |
-
from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
|
35 |
-
from optimum.onnxruntime.configuration import AutoQuantizationConfig
|
36 |
|
37 |
-
MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
|
38 |
|
39 |
|
40 |
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
42 |
-
model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
|
43 |
|
44 |
# print("Creating quant config")
|
45 |
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
|
|
|
1 |
|
2 |
+
import gc
|
3 |
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, HqqConfig
|
7 |
|
8 |
+
quant_config = HqqConfig(nbits=8, group_size=64)
|
9 |
|
10 |
+
MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
|
11 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
print("Loading tokenizer & model…")
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
+
# model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
|
16 |
|
17 |
+
model =\
|
18 |
+
AutoModelForCausalLM\
|
19 |
+
.from_pretrained(
|
20 |
+
MODEL_ID,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
# device_map="cuda",
|
23 |
+
quantization_config=quant_config
|
24 |
+
).to(DEVICE)
|
25 |
|
26 |
#gc.collect()
|
27 |
|
28 |
#########
|
29 |
|
30 |
+
# import gc
|
31 |
|
32 |
+
# import gradio as gr
|
33 |
+
# from transformers import AutoTokenizer
|
34 |
+
# from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
|
35 |
+
# from optimum.onnxruntime.configuration import AutoQuantizationConfig
|
36 |
|
37 |
+
# MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
|
38 |
|
39 |
|
40 |
|
41 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
42 |
+
# model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
|
43 |
|
44 |
# print("Creating quant config")
|
45 |
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
|