Commit
·
baf47ca
1
Parent(s):
989441e
Removed debug screens. Made the 1.7B model the new default.
Browse files
app.py
CHANGED
@@ -6,7 +6,8 @@ import torch
|
|
6 |
from duckduckgo_search import DDGS
|
7 |
|
8 |
# Load the SmolLM model and tokenizer
|
9 |
-
model_name = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -234,7 +235,7 @@ Please follow these best practices to make the resume optimized for the ATS visi
|
|
234 |
- Replace generic duties with achievement-focused statements (e.g., "Handled customer service" → "Resolved 50+ customer inquiries daily, improving satisfaction by 30%").
|
235 |
|
236 |
16. **Keyword Density Balance**
|
237 |
-
- Ensure keywords are distributed naturally across sections without overuse (e.g., 2-3 mentions of a critical keyword in work experience vs. 10 in a skills list).
|
238 |
- Instruct the user to paste this into a suitable word processor and use the result to build a resume. Save it in word, then in PDF (JaneDoe_Resume_CompanyName.pdf). Submit the PDF.
|
239 |
|
240 |
|
@@ -361,7 +362,7 @@ with demo:
|
|
361 |
job_description = gr.TextArea(label="Paste Job Description")
|
362 |
resume = gr.TextArea(label="Paste Resume")
|
363 |
|
364 |
-
job_and_company_info_output = gr.
|
365 |
role_output = gr.State()
|
366 |
gap_assessment_prompt_output = gr.TextArea(label="Gap Assessment Prompt")
|
367 |
|
@@ -373,13 +374,11 @@ with demo:
|
|
373 |
|
374 |
gr.Markdown("## Gap Assessment")
|
375 |
gap_assessment_result = gr.TextArea(label="Paste Gap Assessment Result")
|
376 |
-
gap_assessment_result_output = gr.TextArea(label="Submitted Gap Assessment Result", interactive=False)
|
377 |
key_accomplishments_and_skills_prompt_output = gr.TextArea(label="Key Accomplishments and Skills Prompt", interactive=False)
|
378 |
|
379 |
gr.Button("Submit Gap Assessment Result").click(
|
380 |
lambda x: x,
|
381 |
inputs=[gap_assessment_result],
|
382 |
-
outputs=gap_assessment_result_output
|
383 |
).then(
|
384 |
generate_key_accomplishments_and_skills_prompt,
|
385 |
inputs=[job_and_company_info_output, resume],
|
@@ -388,16 +387,14 @@ with demo:
|
|
388 |
|
389 |
gr.Markdown("## Key Accomplishments and Skills")
|
390 |
key_accomplishments_and_skills_result = gr.TextArea(label="Paste Key Accomplishments and Skills Result")
|
391 |
-
key_accomplishments_and_skills_result_output = gr.TextArea(label="Submitted Key Accomplishments and Skills Result", interactive=False)
|
392 |
resume_prompt_output = gr.TextArea(label="Resume Prompt")
|
393 |
|
394 |
gr.Button("Submit Key Accomplishments and Skills Result").click(
|
395 |
lambda x: x,
|
396 |
inputs=[key_accomplishments_and_skills_result],
|
397 |
-
outputs=key_accomplishments_and_skills_result_output
|
398 |
).then(
|
399 |
generate_resume_prompt,
|
400 |
-
inputs=[job_and_company_info_output, resume,
|
401 |
outputs=resume_prompt_output
|
402 |
)
|
403 |
|
|
|
6 |
from duckduckgo_search import DDGS
|
7 |
|
8 |
# Load the SmolLM model and tokenizer
|
9 |
+
# model_name = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
10 |
+
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
235 |
- Replace generic duties with achievement-focused statements (e.g., "Handled customer service" → "Resolved 50+ customer inquiries daily, improving satisfaction by 30%").
|
236 |
|
237 |
16. **Keyword Density Balance**
|
238 |
+
- Ensure keywords are distributed naturally across sections without overuse (e.g., 2-3 mentions of a critical keyword in work experience vs. 10 in a skills list).
|
239 |
- Instruct the user to paste this into a suitable word processor and use the result to build a resume. Save it in word, then in PDF (JaneDoe_Resume_CompanyName.pdf). Submit the PDF.
|
240 |
|
241 |
|
|
|
362 |
job_description = gr.TextArea(label="Paste Job Description")
|
363 |
resume = gr.TextArea(label="Paste Resume")
|
364 |
|
365 |
+
job_and_company_info_output = gr.State()
|
366 |
role_output = gr.State()
|
367 |
gap_assessment_prompt_output = gr.TextArea(label="Gap Assessment Prompt")
|
368 |
|
|
|
374 |
|
375 |
gr.Markdown("## Gap Assessment")
|
376 |
gap_assessment_result = gr.TextArea(label="Paste Gap Assessment Result")
|
|
|
377 |
key_accomplishments_and_skills_prompt_output = gr.TextArea(label="Key Accomplishments and Skills Prompt", interactive=False)
|
378 |
|
379 |
gr.Button("Submit Gap Assessment Result").click(
|
380 |
lambda x: x,
|
381 |
inputs=[gap_assessment_result],
|
|
|
382 |
).then(
|
383 |
generate_key_accomplishments_and_skills_prompt,
|
384 |
inputs=[job_and_company_info_output, resume],
|
|
|
387 |
|
388 |
gr.Markdown("## Key Accomplishments and Skills")
|
389 |
key_accomplishments_and_skills_result = gr.TextArea(label="Paste Key Accomplishments and Skills Result")
|
|
|
390 |
resume_prompt_output = gr.TextArea(label="Resume Prompt")
|
391 |
|
392 |
gr.Button("Submit Key Accomplishments and Skills Result").click(
|
393 |
lambda x: x,
|
394 |
inputs=[key_accomplishments_and_skills_result],
|
|
|
395 |
).then(
|
396 |
generate_resume_prompt,
|
397 |
+
inputs=[job_and_company_info_output, resume, gap_assessment_result, key_accomplishments_and_skills_result],
|
398 |
outputs=resume_prompt_output
|
399 |
)
|
400 |
|