Spaces:
Sleeping
Sleeping
File size: 11,660 Bytes
311c0d0 4bb25ec 6f446d0 07ad0d5 c1db1fc f5bafc2 07ad0d5 f5bafc2 07ad0d5 c1db1fc f5bafc2 08e2c16 07ad0d5 f5bafc2 c1db1fc 07ad0d5 f5bafc2 07ad0d5 f5bafc2 c1db1fc f5bafc2 c1db1fc f5bafc2 c1db1fc f5bafc2 07ad0d5 f5bafc2 c1db1fc f5bafc2 c1db1fc f5bafc2 c1db1fc 07ad0d5 08e2c16 f5bafc2 c1db1fc f5bafc2 08e2c16 c1db1fc 07ad0d5 f5bafc2 08e2c16 f5bafc2 c1db1fc 07ad0d5 e305927 f5bafc2 07ad0d5 f5bafc2 07ad0d5 f5bafc2 e305927 07ad0d5 f5bafc2 e305927 f5bafc2 08e2c16 f5bafc2 08e2aa5 f5bafc2 08e2aa5 8ea0ccb 7a29ecc 6f446d0 cedc6dd f5bafc2 6f446d0 cedc6dd 6f446d0 8ea0ccb 6f446d0 cedc6dd 08e2aa5 f5bafc2 c1db1fc f5bafc2 08e2aa5 f5bafc2 6f446d0 8ea0ccb 08e2aa5 4bb25ec 08e2aa5 8ea0ccb 08e2aa5 f5bafc2 08e2aa5 d68dd9c 08e2aa5 8ea0ccb 08e2aa5 d68dd9c f5bafc2 8ea0ccb 6f446d0 08e2aa5 f5bafc2 08e2aa5 f5bafc2 08e2aa5 6f446d0 08e2aa5 f5bafc2 d68dd9c 8ea0ccb d68dd9c f5bafc2 d68dd9c 6f446d0 d68dd9c f5bafc2 8ea0ccb f5bafc2 d68dd9c f5bafc2 1c3bf8f 148ab21 f5bafc2 148ab21 d68dd9c cedc6dd 08e2aa5 9ef5250 8ea0ccb d68dd9c 08e2aa5 d68dd9c f5bafc2 6f446d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import Tool, CodeAgent, Model
# Import internal modules
from config import (
DEFAULT_API_URL
)
from tools.tool_manager import ToolManager
from utils.local_model import LocalTransformersModel
class GaiaToolCallingAgent:
"""Tool-calling agent specifically designed for the GAIA system."""
def __init__(self, local_model=None):
print("GaiaToolCallingAgent initialized.")
self.tool_manager = ToolManager()
self.name = "tool_agent" # Add required name attribute for smolagents integration
self.description = "A specialized agent that uses various tools to answer questions" # Required by smolagents
# Use local model if provided, or create a simpler one
self.local_model = local_model
if not self.local_model:
try:
from utils.local_model import LocalTransformersModel
self.local_model = LocalTransformersModel(
model_name="TinyLlama/TinyLlama-1.1B-Chat-v0.6",
max_tokens=512
)
except Exception as e:
print(f"Couldn't initialize local model in tool agent: {e}")
self.local_model = None
def run(self, query: str) -> str:
"""Process a query and return a response using available tools."""
print(f"Processing query: {query}")
tools = self.tool_manager.get_tools()
# For each tool, try to get relevant information
context_info = []
for tool in tools:
try:
if self._should_use_tool(tool, query):
print(f"Using tool: {tool.name}")
result = tool.forward(query)
if result:
context_info.append(f"{tool.name} Results:\n{result}")
except Exception as e:
print(f"Error using {tool.name}: {e}")
# Combine all context information
full_context = "\n\n".join(context_info) if context_info else ""
# If we have context and a local model, generate a proper response
if full_context and self.local_model:
try:
prompt = f"""
Based on the following information, please provide a comprehensive answer to the question: "{query}"
CONTEXT INFORMATION:
{full_context}
Answer:
"""
response = self.local_model.generate(prompt)
return response
except Exception as e:
print(f"Error generating response with local model: {e}")
# Fall back to returning just the context
return full_context
else:
# No context or no model, return whatever we have
if not full_context:
return "I couldn't find any relevant information to answer your question."
return full_context
def __call__(self, query: str) -> str:
"""Make the agent callable so it can be used directly by CodeAgent."""
print(f"Tool agent received query: {query}")
return self.run(query)
def _should_use_tool(self, tool: Tool, query: str) -> bool:
"""Determine if a specific tool should be used for the query."""
query_lower = query.lower()
# Tool-specific patterns
patterns = {
"web_search": ["current", "latest", "recent", "who", "what", "when", "where", "how"],
"web_content": ["content", "webpage", "website", "page"],
"youtube_video": ["youtube.com", "youtu.be"],
"wikipedia_search": ["wikipedia", "wiki", "article"],
"gaia_retriever": ["gaia", "agent", "ai", "artificial intelligence"]
}
# Use all tools if patterns dict doesn't have the tool name
if tool.name not in patterns:
return True
return any(pattern in query_lower for pattern in patterns.get(tool.name, []))
def create_manager_agent() -> CodeAgent:
"""Create and configure the main GAIA agent."""
try:
# Import config for local model
from config import LOCAL_MODEL_CONFIG
# Use local model to avoid credit limits
model = LocalTransformersModel(
model_name=LOCAL_MODEL_CONFIG["model_name"],
device=LOCAL_MODEL_CONFIG["device"],
max_tokens=LOCAL_MODEL_CONFIG["max_tokens"],
temperature=LOCAL_MODEL_CONFIG["temperature"]
)
print(f"Using local model: {LOCAL_MODEL_CONFIG['model_name']}")
except Exception as e:
print(f"Error setting up local model: {e}")
# Use a simplified configuration as fallback
model = LocalTransformersModel(
model_name="TinyLlama/TinyLlama-1.1B-Chat-v0.6",
device="cpu"
)
print("Using fallback model configuration")
# Initialize the managed tool-calling agent, sharing the model
tool_agent = GaiaToolCallingAgent(local_model=model)
# Create the manager agent
manager_agent = CodeAgent(
model=model,
tools=[], # No direct tools for manager
managed_agents=[tool_agent],
additional_authorized_imports=[
"json",
"pandas",
"numpy",
"re",
"requests",
"bs4"
],
planning_interval=3,
verbosity_level=2,
max_steps=10
)
print("Manager agent created with local model")
return manager_agent
def create_agent():
"""Create the GAIA agent system."""
try:
print("Initializing GAIA agent system...")
return create_manager_agent()
except Exception as e:
print(f"Error creating GAIA agent: {e}")
return None
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIA agent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Initialize Agent
try:
print("Initializing GAIA agent system...")
agent = create_agent()
if not agent:
return "Error: Could not initialize agent.", None
print("GAIA agent initialization complete.")
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Agent on Questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Run the agent and get the response
response = agent.run(f"Answer this question concisely: {question_text}")
# Clean up the response if needed
if isinstance(response, dict):
submitted_answer = response.get("answer", str(response))
else:
submitted_answer = str(response)
# Add to submission payload
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
# Log the result
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
} # 5. Submit
print(f"Submitting {len(answers_payload)} answers to API...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
status_message = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return status_message, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {str(e)}"
print(f"Error during submission: {e}")
return status_message, pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and see the score.
The agent uses a managed tool-calling architecture and the smolagents framework for reliable answers.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30)
demo.launch(debug=True, share=False) |