davidizzle commited on
Commit
c19fa74
·
1 Parent(s): 7eae56b

Alright rolling back

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -3,10 +3,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
  # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
6
- # model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
7
  # model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
8
  # model_id = "deepseek-ai/deepseek-coder-33b-instruct"
9
- model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
10
  # model_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
11
  tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
12
  model = AutoModelForCausalLM.from_pretrained(model_id,
@@ -14,7 +14,7 @@ model = AutoModelForCausalLM.from_pretrained(model_id,
14
  # torch_dtype=torch.float32,
15
  device_map="auto",
16
  torch_dtype=torch.float16,
17
- trust_remote_code=False
18
  )
19
  # model.to("cpu")
20
 
@@ -24,11 +24,13 @@ def generate_code(prompt, style="Clean & Pythonic"):
24
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
25
  outputs = model.generate(**inputs,
26
  # max_new_tokens=100,
27
- max_new_tokens=500,
28
- do_sample=True,
29
  temperature=1.0,
30
  top_p=0.95,
31
- # eos_token_id=tokenizer.eos_token_id
 
 
32
  )
33
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
34
 
 
3
  import torch
4
 
5
  # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
6
+ model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
7
  # model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
8
  # model_id = "deepseek-ai/deepseek-coder-33b-instruct"
9
+ # model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
10
  # model_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
11
  tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
12
  model = AutoModelForCausalLM.from_pretrained(model_id,
 
14
  # torch_dtype=torch.float32,
15
  device_map="auto",
16
  torch_dtype=torch.float16,
17
+ trust_remote_code=True
18
  )
19
  # model.to("cpu")
20
 
 
24
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
25
  outputs = model.generate(**inputs,
26
  # max_new_tokens=100,
27
+ max_new_tokens=512,
28
+ do_sample=False,
29
  temperature=1.0,
30
  top_p=0.95,
31
+ top_k=50,
32
+ num_return_sequences=1,
33
+ eos_token_id=tokenizer.eos_token_id
34
  )
35
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
36