Spaces:
Sleeping
Sleeping
Commit
·
c19fa74
1
Parent(s):
7eae56b
Alright rolling back
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import torch
|
4 |
|
5 |
# deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
|
6 |
-
|
7 |
# model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
8 |
# model_id = "deepseek-ai/deepseek-coder-33b-instruct"
|
9 |
-
model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
10 |
# model_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_id,
|
@@ -14,7 +14,7 @@ model = AutoModelForCausalLM.from_pretrained(model_id,
|
|
14 |
# torch_dtype=torch.float32,
|
15 |
device_map="auto",
|
16 |
torch_dtype=torch.float16,
|
17 |
-
trust_remote_code=
|
18 |
)
|
19 |
# model.to("cpu")
|
20 |
|
@@ -24,11 +24,13 @@ def generate_code(prompt, style="Clean & Pythonic"):
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
25 |
outputs = model.generate(**inputs,
|
26 |
# max_new_tokens=100,
|
27 |
-
max_new_tokens=
|
28 |
-
do_sample=
|
29 |
temperature=1.0,
|
30 |
top_p=0.95,
|
31 |
-
|
|
|
|
|
32 |
)
|
33 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
|
|
|
3 |
import torch
|
4 |
|
5 |
# deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
|
6 |
+
model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
7 |
# model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
8 |
# model_id = "deepseek-ai/deepseek-coder-33b-instruct"
|
9 |
+
# model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
10 |
# model_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_id,
|
|
|
14 |
# torch_dtype=torch.float32,
|
15 |
device_map="auto",
|
16 |
torch_dtype=torch.float16,
|
17 |
+
trust_remote_code=True
|
18 |
)
|
19 |
# model.to("cpu")
|
20 |
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
25 |
outputs = model.generate(**inputs,
|
26 |
# max_new_tokens=100,
|
27 |
+
max_new_tokens=512,
|
28 |
+
do_sample=False,
|
29 |
temperature=1.0,
|
30 |
top_p=0.95,
|
31 |
+
top_k=50,
|
32 |
+
num_return_sequences=1,
|
33 |
+
eos_token_id=tokenizer.eos_token_id
|
34 |
)
|
35 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
|