File size: 13,845 Bytes
a23bdc6
0a408c8
6e35819
a23bdc6
 
83afd54
 
3a7a44c
 
a23bdc6
aae6306
 
0a408c8
 
a23bdc6
 
 
 
 
 
6e35819
 
0d42969
312213e
a23bdc6
3a7a44c
0a408c8
a23bdc6
543bed3
a23bdc6
0a408c8
62e335a
 
 
 
 
a23bdc6
 
 
 
ea4284c
3a7a44c
 
 
a23bdc6
 
ce6489b
 
a23bdc6
 
ce6489b
 
0a408c8
a23bdc6
ea4284c
 
a23bdc6
0a408c8
ea4284c
 
0a408c8
 
ea4284c
 
 
b6430ec
0a408c8
 
ea4284c
 
 
 
 
 
 
 
 
 
 
b6430ec
ea4284c
b6430ec
ea4284c
 
 
 
 
 
 
 
 
 
 
 
0a408c8
 
 
543bed3
aae6306
 
 
3a7a44c
ce6489b
ea99c1c
 
ce6489b
83afd54
 
a23bdc6
47fda11
ea4284c
a23bdc6
b6430ec
ea4284c
b6430ec
09d4cda
3a7a44c
 
 
873b70f
0a408c8
 
873b70f
3a7a44c
 
873b70f
3a7a44c
873b70f
0a408c8
5cca310
3a7a44c
ea4284c
 
0a408c8
3a7a44c
 
b6430ec
a23bdc6
3a7a44c
 
a23bdc6
5cca310
 
3a7a44c
ce6489b
3a7a44c
 
 
 
 
62e335a
 
3a7a44c
a23bdc6
3a7a44c
b6430ec
a23bdc6
3a7a44c
0a408c8
 
3a7a44c
 
 
 
 
 
a23bdc6
ea4284c
b6430ec
a23bdc6
 
5f4f31d
 
 
 
 
 
 
 
 
3a7a44c
 
5f4f31d
 
 
 
 
 
 
 
0a408c8
a23bdc6
 
 
 
543bed3
a23bdc6
09d4cda
a23bdc6
 
 
 
6e35819
 
ea4284c
 
6e35819
ea4284c
543bed3
ea4284c
 
 
 
 
 
 
 
 
 
6e35819
 
 
 
ea4284c
6e35819
543bed3
 
6e35819
a23bdc6
6e35819
ea4284c
 
 
 
 
543bed3
ea4284c
6e35819
ea4284c
a23bdc6
 
ea4284c
 
 
 
 
 
 
a23bdc6
ce6489b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312213e
 
 
 
0a408c8
312213e
ce6489b
 
 
5f4f31d
 
0a408c8
62e335a
5f4f31d
 
 
 
 
 
 
 
 
 
ce6489b
 
 
 
 
 
 
a23bdc6
5f4f31d
 
 
 
 
 
0a408c8
ea4284c
 
22c5ba1
ea4284c
 
0a408c8
ea4284c
 
 
b6430ec
a23bdc6
 
0a408c8
6e35819
 
b6430ec
0a408c8
 
 
 
ea4284c
a23bdc6
b6430ec
0d42969
a23bdc6
 
 
 
83afd54
a23bdc6
09d4cda
6e35819
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import asyncio
import logging

import gradio as gr
import pandas as pd

from data_access import get_questions, get_source_finders, get_run_ids, get_baseline_rankers, \
    get_unified_sources, get_source_text, calculate_cumulative_statistics_for_all_questions, get_metadata, \
    get_async_connection

logger = logging.getLogger(__name__)

ALL_QUESTIONS_STR = "All questions"

# Initialize data at the module level
questions = []
source_finders = []
questions_dict = {}
source_finders_dict = {}
question_options = []
baseline_rankers_dict = {}
baseline_ranker_options = []
run_ids = []
available_run_id_dict = {}
finder_options = []
previous_run_id = "initial_run"
run_id_options = []

run_id_dropdown = None


# Last source runs for retrieving full baseline_reason on selection
last_source_runs = []
# Maximum length for baseline_reason display
TRUNCATE_REASON_LEN = 50

# Get all questions

# Initialize data in a single async function
async def initialize_data():
    global source_finders, source_finders_dict, finder_options, baseline_rankers_dict, source_finders_dict, baseline_ranker_options
    async with get_async_connection() as conn:
        source_finders = await get_source_finders(conn)
        baseline_rankers = await get_baseline_rankers(conn)

    # Convert to dictionaries for easier lookup
    baseline_rankers_dict = {f["name"]: f["id"] for f in baseline_rankers}
    source_finders_dict = {f["name"]: f["id"] for f in source_finders}

    # Create formatted options for dropdowns
    finder_options = [s["name"] for s in source_finders]
    baseline_ranker_options = [b["name"] for b in baseline_rankers]


def update_run_ids(question_option, source_finder_name, baseline_ranker_name):
    return asyncio.run(update_run_ids_async(question_option, source_finder_name, baseline_ranker_name))


async def update_run_ids_async(question_option, source_finder_name, baseline_ranker_name):
    global question_options, questions_dict, previous_run_id, available_run_id_dict, run_id_options
    async with get_async_connection() as conn:
        finder_id_int = source_finders_dict.get(source_finder_name)
        available_run_id_dict = await get_run_ids(conn, finder_id_int)
        run_id_options = list(available_run_id_dict.keys())
        return gr.Dropdown(choices=[]), None, None, gr.Dropdown(choices=run_id_options,
                                                                value=None), "Select Question to see results.csv", "", ""


def update_questions_list(source_finder_name, run_id, baseline_ranker_name):
    return asyncio.run(update_questions_list_async(source_finder_name, run_id, baseline_ranker_name))


async def update_questions_list_async(source_finder_name, run_id, baseline_ranker_name):
    global available_run_id_dict
    if source_finder_name and run_id and baseline_ranker_name:
        async with get_async_connection() as conn:
            run_id_int = available_run_id_dict.get(run_id)
            baseline_ranker_id = baseline_rankers_dict.get(baseline_ranker_name)
            questions = await get_updated_question_list(conn, baseline_ranker_id, run_id_int)
            return gr.Dropdown(choices=questions, value=None), None, None, None, None, ""
    else:
        return None, None, None, None, None, ""


async def get_updated_question_list(conn, baseline_ranker_id, finder_id_int):
    global questions_dict, questions
    questions = await get_questions(conn, finder_id_int, baseline_ranker_id)
    if questions:
        questions_dict = {q["text"]: q["id"] for q in questions}
        question_options = [ALL_QUESTIONS_STR] + [q['text'] for q in questions]
    else:
        question_options = []
    return question_options


def update_sources_list(question_option, source_finder_id, run_id: str, baseline_ranker_id: str,
                        evt: gr.EventData = None):
    global previous_run_id
    if evt:
        logger.info(f"event: {evt.target.elem_id}")
        if evt.target.elem_id == "run_id_dropdown" and (type(run_id) == list or run_id == previous_run_id):
            return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip()

    if type(run_id) == str:
        previous_run_id = run_id
    return asyncio.run(update_sources_list_async(question_option, source_finder_id, run_id, baseline_ranker_id))


# Main function to handle UI interactions
async def update_sources_list_async(question_option, source_finder_name, run_id, baseline_ranker_name: str):
    global available_run_id_dict, previous_run_id, questions_dict
    if not question_option:
        return gr.skip(), gr.skip(), "No question selected", "", ""
    if not source_finder_name or not run_id or not baseline_ranker_name:
        return gr.skip(), gr.skip(), "Need to select source finder and baseline", "", ""
    logger.info("processing update")
    async with get_async_connection() as conn:
        if type(baseline_ranker_name) == list:
            baseline_ranker_name = baseline_ranker_name[0]

        baseline_ranker_id_int = 1 if len(baseline_ranker_name) == 0 else baseline_rankers_dict.get(
            baseline_ranker_name)

        if len(source_finder_name):
            finder_id_int = source_finders_dict.get(source_finder_name)
        else:
            finder_id_int = None

        if question_option == ALL_QUESTIONS_STR:
            if finder_id_int:
                run_id_int = available_run_id_dict.get(run_id)
                all_stats = await calculate_cumulative_statistics_for_all_questions(conn, list(questions_dict.values()),
                                                                                    run_id_int,
                                                                                    baseline_ranker_id_int)
            else:
                all_stats = None
            return None, all_stats, "Select Run Id and source finder to see results.csv", "", ""

        # Extract question ID from selection
        question_id = questions_dict.get(question_option)

        available_run_id_dict = await get_run_ids(conn, finder_id_int, question_id)
        previous_run_id = run_id
        run_id_int = available_run_id_dict.get(run_id)

        source_runs = None
        stats = None
        # Get source runs data
        if finder_id_int:
            source_runs, stats = await get_unified_sources(conn, question_id, run_id_int, baseline_ranker_id_int)
            global last_source_runs
            last_source_runs = source_runs
            df = pd.DataFrame(source_runs)

        if not source_runs:
            return None, None, "No results.csv found for the selected filters", "", ""

        # Format table columns
        columns_to_display = ['sugya_id', 'in_baseline', 'baseline_rank', 'in_source_run', 'source_run_rank',
                              'tractate',
                              'folio', 'reason']
        df_display = df[columns_to_display] if all(col in df.columns for col in columns_to_display) else df

        # CSV for download
        # csv_data = df.to_csv(index=False)
        metadata = await get_metadata(conn, question_id, run_id_int)

    result_message = f"Found {len(source_runs)} results.csv"
    return df_display, stats, result_message, metadata, ""


# Add a new function to handle row selection
async def handle_row_selection_async(evt: gr.SelectData):
    if evt is None or evt.value is None:
        return "No source selected"

    try:
        # Get the ID from the selected row
        tractate_chunk_id = evt.row_value[0]
        # Get the source text
        async with get_async_connection() as conn:
            text = await get_source_text(conn, tractate_chunk_id)
        return text
    except Exception as e:
        return f"Error retrieving source text: {str(e)}"


def handle_row_selection(evt: gr.SelectData):
    return asyncio.run(handle_row_selection_async(evt))


# Create Gradio app

# Ensure we clean up when done
async def main():
    global run_id_dropdown
    await initialize_data()
    with gr.Blocks(title="Source Runs Explorer", theme=gr.themes.Citrus()) as app:
        gr.Markdown("# Source Runs Explorer")

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row():
                    with gr.Column(scale=1):
                        source_finder_dropdown = gr.Dropdown(
                            choices=finder_options,
                            value=None,
                            label="Source Finder",
                            interactive=True,
                            elem_id="source_finder_dropdown"
                        )
                    with gr.Column(scale=1):
                        run_id_dropdown = gr.Dropdown(
                            choices=run_id_options,
                            value=None,
                            allow_custom_value=True,
                            label="source finder Run ID",
                            interactive=True,
                            elem_id="run_id_dropdown"
                        )
                    with gr.Column(scale=1):
                        baseline_rankers_dropdown = gr.Dropdown(
                            choices=baseline_ranker_options,
                            value=None,
                            label="Select Baseline Ranker",
                            interactive=True,
                            elem_id="baseline_rankers_dropdown"
                        )
                with gr.Row():
                    with gr.Column(scale=1):
                        # Main content area
                        question_dropdown = gr.Dropdown(
                            choices=[ALL_QUESTIONS_STR] + question_options,
                            label="Select Question (if list is empty this means there is no overlap between source run and baseline)",
                            value=None,
                            interactive=True,
                            elem_id="question_dropdown"
                        )

            with gr.Column(scale=1):
                # Sidebar area
                gr.Markdown("""To Get started select the following:                
                * Source Finder
                * Source Finder Run ID (corresponds to a run of the source finder for a group of questions)
                * Baseline Ranker (corresponds to a run of the baseline ranker for a group of questions)
                
                **Note: if there is no overlap between the baseline questions and the source finder questions, the question list will be empty.**
                """)

        with gr.Row():
            result_text = gr.Markdown("Select a question to view source runs")
        with gr.Row():
            gr.Markdown("# Source Run Statistics")
        with gr.Row():
            statistics_table = gr.DataFrame(
                headers=["num_high_ranked_baseline_sources",
                         "num_high_ranked_found_sources",
                         "overlap_count",
                         "overlap_percentage",
                         "high_ranked_overlap_count",
                         "high_ranked_overlap_percentage"
                         ],
                interactive=False,
            )
        with gr.Row():
            metadata_text = gr.TextArea(
                label="Metadata of Source Finder for Selected Question",
                elem_id="metadata",
                lines=2
            )
        with gr.Row():
            gr.Markdown("# Sources Found")
        with gr.Row():
            with gr.Column(scale=3):
                results_table = gr.DataFrame(
                    headers=['id', 'tractate', 'folio', 'in_baseline', 'baseline_rank', 'in_source_run',
                             'source_run_rank', 'source_reason', 'baseline_reason'],
                    interactive=False
                )
            with gr.Column(scale=1):
                source_text = gr.TextArea(
                    value="Text of the source will appear here",
                    lines=15,
                    label="Source Text",
                    interactive=False,
                    elem_id="source_text"
                )

            # download_button = gr.DownloadButton(
            #     label="Download Results as CSV",
            #     interactive=True,
            #     visible=True
            # )

        # Set up event handlers
        results_table.select(
            handle_row_selection,
            inputs=None,
            outputs=source_text
        )

        baseline_rankers_dropdown.change(
            update_questions_list,
            inputs=[source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
            outputs=[question_dropdown, result_text, metadata_text, results_table, statistics_table, source_text]

        )

        run_id_dropdown.change(
            update_questions_list,
            inputs=[source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
            outputs=[question_dropdown, result_text, metadata_text, results_table, statistics_table, source_text]
        )

        question_dropdown.change(
            update_sources_list,
            inputs=[question_dropdown, source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
            outputs=[results_table, statistics_table, result_text, metadata_text, source_text]
        )

        source_finder_dropdown.change(
            update_run_ids,
            inputs=[question_dropdown, source_finder_dropdown, baseline_rankers_dropdown],
            # outputs=[run_id_dropdown, results_table, result_text, download_button]
            outputs=[question_dropdown, results_table, statistics_table, run_id_dropdown, result_text, metadata_text, source_text]
        )

    app.queue()
    app.launch()


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    asyncio.run(main())