davron04 commited on
Commit
0cf5320
·
1 Parent(s): b6d4fe2

updated app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -17,7 +17,7 @@ torch_model.fc = nn.Sequential(
17
  tf_model = tf.keras.models.load_model('./models/tensorflow_model.keras')
18
  torch_model.load_state_dict(torch.load('./models/pytorch_model.pth', weights_only=True, map_location='cpu'))
19
  torch_model.eval()
20
-
21
  selected_model = st.selectbox(
22
  label = 'Select the model to make a prediction',
23
  options = ['TensorFlow', 'PyTorch'],
@@ -34,9 +34,6 @@ if uploaded_file is not None:
34
  # Convert to PIL Image
35
  image = Image.open(uploaded_file).convert("RGB")
36
 
37
- # Display Uploaded Image
38
- st.image(image, caption="Uploaded X-ray", use_container_width=True)
39
-
40
  image_size = 256 # Match model input size
41
  if selected_model == "PyTorch":
42
  # PyTorch Preprocessing
@@ -62,5 +59,10 @@ if uploaded_file is not None:
62
  prediction = tf_model.predict(image_array)[0][0] # Extract single value
63
 
64
  # Display Prediction
65
- st.write(f"**According to the model, there is a {prediction:.2f}% chance of having pneumonia!**")
 
 
 
 
 
66
 
 
17
  tf_model = tf.keras.models.load_model('./models/tensorflow_model.keras')
18
  torch_model.load_state_dict(torch.load('./models/pytorch_model.pth', weights_only=True, map_location='cpu'))
19
  torch_model.eval()
20
+ st.title("Pneumonia detection using CNNs")
21
  selected_model = st.selectbox(
22
  label = 'Select the model to make a prediction',
23
  options = ['TensorFlow', 'PyTorch'],
 
34
  # Convert to PIL Image
35
  image = Image.open(uploaded_file).convert("RGB")
36
 
 
 
 
37
  image_size = 256 # Match model input size
38
  if selected_model == "PyTorch":
39
  # PyTorch Preprocessing
 
59
  prediction = tf_model.predict(image_array)[0][0] # Extract single value
60
 
61
  # Display Prediction
62
+ st.header(
63
+ f"**According to the model, there is a {prediction*100:.2f}% chance of having pneumonia!**",
64
+ divider='blue'
65
+ )
66
+ # Display Uploaded Image
67
+ st.image(image, caption="Uploaded X-ray", use_container_width=True)
68