File size: 8,719 Bytes
10e9b7d
7821faf
3a293e2
4c200bf
7821faf
57bc7b8
cfc7eb3
3a293e2
57bc7b8
 
3a293e2
57bc7b8
 
3a293e2
 
57bc7b8
3a293e2
 
57bc7b8
3a293e2
57bc7b8
 
 
3a293e2
 
 
 
 
 
 
57bc7b8
 
3a293e2
57bc7b8
 
 
3a293e2
 
 
57bc7b8
 
 
 
 
 
 
 
 
 
 
 
 
 
3a293e2
57bc7b8
 
 
 
 
 
 
3a293e2
57bc7b8
3a293e2
7821faf
3a293e2
7821faf
 
 
2c0ba2f
 
703ec74
 
 
 
3a293e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703ec74
 
188585a
3a293e2
7821faf
188585a
2c0ba2f
 
 
7821faf
703ec74
 
7821faf
703ec74
3a293e2
57bc7b8
188585a
3a293e2
2c0ba2f
 
57bc7b8
 
 
 
 
 
 
3a293e2
57bc7b8
3a293e2
57bc7b8
 
 
 
3a293e2
57bc7b8
 
 
703ec74
57bc7b8
3a293e2
57bc7b8
7821faf
57bc7b8
3a293e2
 
 
7821faf
188585a
2c0ba2f
 
 
 
 
 
 
 
 
 
3a293e2
7821faf
57bc7b8
188585a
3a293e2
7821faf
3a293e2
4c200bf
3a293e2
f21f66c
2c0ba2f
703ec74
 
 
3a293e2
 
703ec74
3a293e2
703ec74
 
3a293e2
188585a
2c0ba2f
 
7821faf
703ec74
 
 
 
188585a
4c200bf
703ec74
 
57bc7b8
703ec74
 
 
 
 
57bc7b8
703ec74
 
 
 
 
 
7821faf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import gradio as gr
import requests
import pandas as pd
import time
import re

from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.agents import AgentExecutor, create_react_agent
from langchain.memory import ConversationSummaryMemory
from typing import List, Optional

# === TOOL IMPORTS ===
from helper import repl_tool, file_saver_tool, audio_transcriber_tool, gemini_multimodal_tool, wikipedia_search_tool2

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Prompt ---
prompt = PromptTemplate(
    input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
    template="""
    You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks.
    [ ...cut for brevity: insert your strict format rules and examples here ... ]
    {chat_history}
    New input: {input}
    ---
    {agent_scratchpad}
    """
)

# === AGENT DEFINITION ===
class BasicAgent:
    def __init__(
        self,
        agent, tools: List, verbose: bool = False, handle_parsing_errors: bool = True,
        max_iterations: int = 9, memory: Optional[ConversationSummaryMemory] = None
    ):
        self.agent = agent
        self.tools = tools
        self.verbose = verbose
        self.handle_parsing_errors = handle_parsing_errors
        self.max_iterations = max_iterations
        self.memory = memory
        self.agent_obj = AgentExecutor(
            agent=self.agent,
            tools=self.tools,
            verbose=self.verbose,
            handle_parsing_errors=self.handle_parsing_errors,
            max_iterations=self.max_iterations,
            memory=self.memory
        )

    def __call__(self, question: str) -> str:
        result = self.agent_obj.invoke(
            {"input": question},
            config={"configurable": {"session_id": "test-session"}},
        )
        return result['output']

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # OpenAI API key only!
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        print("OpenAI API key not found in environment variables.")
        return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None

    # Use GPT-4o (or another allowed OpenAI model)
    llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)

    # Tools: only offline/tools not requiring other APIs
    tools = [
        repl_tool,
        file_saver_tool,
        audio_transcriber_tool,
        gemini_multimodal_tool,   # If this is purely local or adapted for OpenAI images, otherwise remove!
        wikipedia_search_tool2
    ]

    summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")

    summary_react_agent = create_react_agent(
        llm=llm_client,
        tools=tools,
        prompt=prompt
    )

    # 1. Instantiate Agent
    try:
        agent = BasicAgent(summary_react_agent, tools, True, True, 30, summary_memory)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        full_question_for_agent = question_text
        if file_name:
            attachment_url = f"{DEFAULT_API_URL}/files/{task_id}"
            full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
            print(f"Running agent on task {task_id}: {full_question_for_agent}", flush=True)
        try:
            submitted_answer = agent(full_question_for_agent)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            time.sleep(2)  # Decrease or remove if not rate-limited!
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status).strip()
        results_df = pd.DataFrame(results_log)
        return cleaned_final_status, results_df
    except Exception as e:
        print(f"Error submitting answers: {e}")
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Note:** Only OpenAI API key is needed!
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")
    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)