File size: 8,719 Bytes
10e9b7d 7821faf 3a293e2 4c200bf 7821faf 57bc7b8 cfc7eb3 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 7821faf 3a293e2 7821faf 2c0ba2f 703ec74 3a293e2 703ec74 188585a 3a293e2 7821faf 188585a 2c0ba2f 7821faf 703ec74 7821faf 703ec74 3a293e2 57bc7b8 188585a 3a293e2 2c0ba2f 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 703ec74 57bc7b8 3a293e2 57bc7b8 7821faf 57bc7b8 3a293e2 7821faf 188585a 2c0ba2f 3a293e2 7821faf 57bc7b8 188585a 3a293e2 7821faf 3a293e2 4c200bf 3a293e2 f21f66c 2c0ba2f 703ec74 3a293e2 703ec74 3a293e2 703ec74 3a293e2 188585a 2c0ba2f 7821faf 703ec74 188585a 4c200bf 703ec74 57bc7b8 703ec74 57bc7b8 703ec74 7821faf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import gradio as gr
import requests
import pandas as pd
import time
import re
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.agents import AgentExecutor, create_react_agent
from langchain.memory import ConversationSummaryMemory
from typing import List, Optional
# === TOOL IMPORTS ===
from helper import repl_tool, file_saver_tool, audio_transcriber_tool, gemini_multimodal_tool, wikipedia_search_tool2
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Prompt ---
prompt = PromptTemplate(
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
template="""
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks.
[ ...cut for brevity: insert your strict format rules and examples here ... ]
{chat_history}
New input: {input}
---
{agent_scratchpad}
"""
)
# === AGENT DEFINITION ===
class BasicAgent:
def __init__(
self,
agent, tools: List, verbose: bool = False, handle_parsing_errors: bool = True,
max_iterations: int = 9, memory: Optional[ConversationSummaryMemory] = None
):
self.agent = agent
self.tools = tools
self.verbose = verbose
self.handle_parsing_errors = handle_parsing_errors
self.max_iterations = max_iterations
self.memory = memory
self.agent_obj = AgentExecutor(
agent=self.agent,
tools=self.tools,
verbose=self.verbose,
handle_parsing_errors=self.handle_parsing_errors,
max_iterations=self.max_iterations,
memory=self.memory
)
def __call__(self, question: str) -> str:
result = self.agent_obj.invoke(
{"input": question},
config={"configurable": {"session_id": "test-session"}},
)
return result['output']
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# OpenAI API key only!
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("OpenAI API key not found in environment variables.")
return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None
# Use GPT-4o (or another allowed OpenAI model)
llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)
# Tools: only offline/tools not requiring other APIs
tools = [
repl_tool,
file_saver_tool,
audio_transcriber_tool,
gemini_multimodal_tool, # If this is purely local or adapted for OpenAI images, otherwise remove!
wikipedia_search_tool2
]
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")
summary_react_agent = create_react_agent(
llm=llm_client,
tools=tools,
prompt=prompt
)
# 1. Instantiate Agent
try:
agent = BasicAgent(summary_react_agent, tools, True, True, 30, summary_memory)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
full_question_for_agent = question_text
if file_name:
attachment_url = f"{DEFAULT_API_URL}/files/{task_id}"
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
print(f"Running agent on task {task_id}: {full_question_for_agent}", flush=True)
try:
submitted_answer = agent(full_question_for_agent)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
time.sleep(2) # Decrease or remove if not rate-limited!
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status).strip()
results_df = pd.DataFrame(results_log)
return cleaned_final_status, results_df
except Exception as e:
print(f"Error submitting answers: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Note:** Only OpenAI API key is needed!
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |