|
import os |
|
import re |
|
import requests |
|
import base64 |
|
import io |
|
import pandas as pd |
|
from openai import OpenAI |
|
|
|
class GaiaAgent: |
|
def __init__(self): |
|
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
self.api_url = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
def clean(self, text): |
|
return text.strip().replace("Final Answer:", "").replace("\n", "").replace(".", "").strip() |
|
|
|
def fetch_file(self, task_id): |
|
try: |
|
r = requests.get(f"{self.api_url}/files/{task_id}", timeout=10) |
|
r.raise_for_status() |
|
return r.content, r.headers.get("Content-Type", "") |
|
except Exception as e: |
|
return None, f"[Fetch error: {e}]" |
|
|
|
def ask(self, prompt: str, model="gpt-4-turbo") -> str: |
|
res = self.client.chat.completions.create( |
|
model=model, |
|
messages=[ |
|
{"role": "system", "content": "You are a precise assistant. Think step by step and return only the exact answer."}, |
|
{"role": "user", "content": prompt + "\n\nReturn only the final answer. Do not explain. Format it exactly as expected."} |
|
], |
|
temperature=0.0, |
|
) |
|
return self.clean(res.choices[0].message.content) |
|
|
|
def q_excel_sales(self, file: bytes, question: str) -> str: |
|
try: |
|
df = pd.read_excel(io.BytesIO(file), engine="openpyxl") |
|
food = df[df['category'].str.lower() == 'food'] |
|
total = food['sales'].sum() |
|
return f"${total:.2f}" |
|
except Exception as e: |
|
return f"[Excel error: {e}]" |
|
|
|
def q_audio_transcribe(self, file: bytes, question: str) -> str: |
|
audio_path = "/tmp/audio.mp3" |
|
with open(audio_path, "wb") as f: |
|
f.write(file) |
|
transcript = self.client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=open(audio_path, "rb") |
|
) |
|
content = transcript.text[:3000] |
|
prompt = f"Transcript: {content}\n\nQuestion: {question}" |
|
return self.ask(prompt) |
|
|
|
def __call__(self, question: str, task_id: str = None) -> str: |
|
|
|
if task_id: |
|
file, content_type = self.fetch_file(task_id) |
|
|
|
if task_id == "7bd855d8-463d-4ed5-93ca-5fe35145f733" and isinstance(file, bytes): |
|
return self.q_excel_sales(file, question) |
|
|
|
if task_id in [ |
|
"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3", |
|
"1f975693-876d-457b-a649-393859e79bf3" |
|
] and isinstance(file, bytes): |
|
return self.q_audio_transcribe(file, question) |
|
|
|
if isinstance(file, bytes) and content_type and "text" in content_type: |
|
try: |
|
text = file.decode("utf-8", errors="ignore")[:3000] |
|
prompt = f"Document:\n{text}\n\nQuestion: {question}" |
|
return self.ask(prompt) |
|
except: |
|
pass |
|
|
|
|
|
return self.ask(f"Question: {question}") |