|
import requests |
|
import os |
|
import gradio as gr |
|
import inspect |
|
import pandas as pd |
|
import time |
|
import re |
|
|
|
|
|
|
|
from langchain_experimental.utilities import PythonREPL |
|
from langchain.tools import Tool |
|
|
|
|
|
python_repl = PythonREPL() |
|
repl_tool = Tool( |
|
name="python_repl", |
|
description=""" |
|
A Python REPL (Read-Eval-Print Loop) for executing Python code. |
|
Use this tool for: |
|
- Performing accurate calculations (arithmetic, complex math). |
|
- Manipulating and analyzing data (e.g., lists, numbers). |
|
- Executing small, self-contained Python scripts. |
|
Input MUST be valid Python code, and all outputs must be printed. |
|
""", |
|
func=python_repl.run, |
|
) |
|
|
|
|
|
def download_and_save_file(args: dict) -> str: |
|
""" |
|
Downloads a file from a given URL and saves it to a specified local filename. |
|
Input: JSON string with 'url' and 'local_filename' keys. |
|
Example: {"url": "https://example.com/data.xlsx", "local_filename": "data.xlsx"} |
|
""" |
|
try: |
|
if isinstance(args, str): |
|
import json |
|
args = json.loads(args) |
|
url = args.get("url") |
|
local_filename = args.get("local_filename") |
|
if not url or not local_filename: |
|
return "Error: Both 'url' and 'local_filename' must be provided." |
|
response = requests.get(url, stream=True, timeout=30) |
|
response.raise_for_status() |
|
os.makedirs(os.path.dirname(local_filename) or '.', exist_ok=True) |
|
with open(local_filename, 'wb') as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
return f"File downloaded successfully to {local_filename}" |
|
except Exception as e: |
|
return f"An unexpected error occurred: {e}" |
|
|
|
file_saver_tool = Tool( |
|
name="file_saver", |
|
description="Downloads a file from a URL and saves it to a specified local filename. Input: JSON with 'url' and 'local_filename'.", |
|
func=download_and_save_file, |
|
) |
|
|
|
|
|
import speech_recognition as sr |
|
from pydub import AudioSegment |
|
|
|
def transcribe_audio_from_path(local_audio_path: str, language: str = "en-US") -> str: |
|
""" |
|
Transcribes audio content from a local file path to text. |
|
Only local file paths. Converts to WAV if needed. |
|
""" |
|
r = sr.Recognizer() |
|
temp_wav_path = "temp_audio_to_transcribe.wav" |
|
transcribed_text = "" |
|
try: |
|
if local_audio_path.startswith("http://") or local_audio_path.startswith("https://"): |
|
return "Error: This tool only accepts local file paths, not URLs. Please use 'file_saver' first." |
|
if not os.path.exists(local_audio_path): |
|
return f"Error: Local audio file not found at '{local_audio_path}'." |
|
audio = AudioSegment.from_file(local_audio_path) |
|
audio.export(temp_wav_path, format="wav") |
|
with sr.AudioFile(temp_wav_path) as source: |
|
audio_listened = r.record(source) |
|
try: |
|
transcribed_text = r.recognize_google(audio_listened, language=language) |
|
except sr.UnknownValueError: |
|
return "Could not understand audio (speech not clear or too short)." |
|
except sr.RequestError as e: |
|
return f"Could not request results from Google Speech Recognition service; {e}" |
|
except Exception as e: |
|
return f"An unexpected error occurred during audio processing or transcription: {e}" |
|
finally: |
|
if os.path.exists(temp_wav_path): |
|
os.remove(temp_wav_path) |
|
return transcribed_text.strip() |
|
|
|
audio_transcriber_tool = Tool( |
|
name="audio_transcriber_tool", |
|
description=( |
|
"Transcribes audio content from a **local file path** to a text transcript. " |
|
"Use for extracting spoken information from audio recordings downloaded using 'file_saver'." |
|
), |
|
func=transcribe_audio_from_path, |
|
) |
|
|
|
|
|
import base64 |
|
from langchain.tools import Tool |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_core.messages import HumanMessage |
|
|
|
def analyze_image_with_gemini(args: dict) -> str: |
|
""" |
|
Analyzes an image using Gemini Multimodal LLM to answer a given question. |
|
Input: JSON with 'image_path' and 'question'. |
|
""" |
|
try: |
|
if isinstance(args, str): |
|
import json |
|
args = json.loads(args) |
|
image_path = args.get("image_path") |
|
question = args.get("question") |
|
if not image_path or not question: |
|
return "Error: Both 'image_path' and 'question' must be provided." |
|
if not os.path.exists(image_path): |
|
return f"Error: Local image file not found at '{image_path}'." |
|
google_api_key = os.getenv("GOOGLE_API_KEY") |
|
if not google_api_key: |
|
return "Error: GOOGLE_API_KEY not found in environment variables for multimodal tool." |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-2.0-flash", |
|
google_api_key=google_api_key, |
|
temperature=0.0 |
|
) |
|
with open(image_path, "rb") as f: |
|
image_bytes = f.read() |
|
image_base64 = base64.b64encode(image_bytes).decode('utf-8') |
|
message = HumanMessage( |
|
content=[ |
|
{"type": "text", "text": question}, |
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, |
|
] |
|
) |
|
response = llm.invoke([message]) |
|
return response.content |
|
except Exception as e: |
|
return f"Error in gemini_multimodal_tool: {e}" |
|
|
|
gemini_multimodal_tool = Tool( |
|
name="gemini_multimodal_tool", |
|
description="Analyze an image with Gemini LLM. Input: JSON with 'image_path' and 'question'.", |
|
func=analyze_image_with_gemini, |
|
) |
|
|
|
|
|
from langchain_community.document_loaders import WikipediaLoader |
|
|
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return up to 2 results.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
|
|
wikipedia_search_tool2 = Tool( |
|
name="wikipedia_search_tool2", |
|
description="Search Wikipedia for a query and return up to 2 results.", |
|
func=wiki_search, |
|
) |
|
|
|
|
|
|
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain.memory import ConversationSummaryMemory |
|
from langchain.prompts import PromptTemplate |
|
from langchain.agents import AgentExecutor, create_react_agent |
|
from typing import List, Optional |
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
google_api_key = os.getenv("GOOGLE_API_KEY") |
|
if not google_api_key: |
|
raise RuntimeError("GOOGLE_API_KEY not found in environment. Please set it.") |
|
|
|
gemini_model = "gemini-2.0-flash" |
|
llm_client = ChatGoogleGenerativeAI( |
|
model=gemini_model, |
|
google_api_key=google_api_key, |
|
temperature=0, |
|
) |
|
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history") |
|
|
|
|
|
prompt = PromptTemplate( |
|
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"], |
|
template=""" |
|
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks. |
|
Your FINAL ANSWER must be one of these formats and ONLY the answer itself (no intro phrases): |
|
- A number (e.g., '26', '1977', '519') |
|
- As few words as possible (e.g., 'Paris', 'down', 'LUX') |
|
- A comma-separated list of numbers and/or strings (e.g., '10,20,30', 'apple,banana,orange') |
|
--- |
|
Previous conversation history: |
|
{chat_history} |
|
New input: {input} |
|
--- |
|
{agent_scratchpad} |
|
""" |
|
) |
|
|
|
tools = [repl_tool, file_saver_tool, audio_transcriber_tool, gemini_multimodal_tool, wikipedia_search_tool2] |
|
|
|
summary_llm = ChatGoogleGenerativeAI( |
|
model=gemini_model, |
|
google_api_key=google_api_key, |
|
temperature=0, |
|
streaming=True |
|
) |
|
|
|
summary_react_agent = create_react_agent( |
|
llm=summary_llm, |
|
tools=tools, |
|
prompt=prompt |
|
) |
|
|
|
class BasicAgent: |
|
def __init__( |
|
self, |
|
agent, |
|
tools: List, |
|
verbose: bool = False, |
|
handle_parsing_errors: bool = True, |
|
max_iterations: int = 9, |
|
memory: Optional[ConversationSummaryMemory] = None |
|
) -> None: |
|
self.agent = agent |
|
self.tools = tools |
|
self.verbose = verbose |
|
self.handle_parsing_errors = handle_parsing_errors |
|
self.max_iterations = max_iterations |
|
self.memory = memory |
|
self.agent_obj = AgentExecutor( |
|
agent=self.agent, |
|
tools=self.tools, |
|
verbose=self.verbose, |
|
handle_parsing_errors=self.handle_parsing_errors, |
|
max_iterations=self.max_iterations, |
|
memory=self.memory |
|
) |
|
def __call__(self, question: str) -> str: |
|
result = self.agent_obj.invoke( |
|
{"input": question}, |
|
config={"configurable": {"session_id": "test-session"}}, |
|
) |
|
return result['output'] |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
agent = BasicAgent(summary_react_agent, tools, True, True, 30, summary_memory) |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
full_question_for_agent = question_text |
|
if file_name: |
|
attachment_url = f"{api_url}/files/{task_id}" |
|
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}" |
|
print(f"Running agent on task {task_id}: {full_question_for_agent}",flush=True) |
|
try: |
|
submitted_answer = agent(full_question_for_agent) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
time.sleep(5) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status) |
|
cleaned_final_status = cleaned_final_status.strip() |
|
results_df = pd.DataFrame(results_log) |
|
return cleaned_final_status, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. |
|
""" |
|
) |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |