dawid-lorek's picture
Update agent.py
6acc56a verified
raw
history blame
4.77 kB
import os
import requests
import re
import base64
import pandas as pd
import io
from openai import OpenAI
class GaiaAgent:
def __init__(self):
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.api_url = "https://agents-course-unit4-scoring.hf.space"
self.instructions = (
"You are a highly skilled and concise research assistant solving GAIA benchmark questions.\n"
"Analyze attached files, video links, and images. Reason step-by-step internally.\n"
"Return only the final factual answer. Do not explain."
)
def fetch_file(self, task_id: str):
try:
url = f"{self.api_url}/files/{task_id}"
response = requests.get(url, timeout=10)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
return response.content, content_type
except Exception as e:
return None, f"[File error: {e}]"
def extract_youtube_context(self, question: str) -> str:
match = re.search(r"https://www\.youtube\.com/watch\?v=([\w-]+)", question)
if match:
video_id = match.group(1)
return (
f"This question refers to a YouTube video with ID: {video_id}.\n"
f"Assume the video contains relevant visual or auditory cues.\n"
)
return ""
def extract_image_prompt(self, image_bytes: bytes) -> dict:
image_b64 = base64.b64encode(image_bytes).decode("utf-8")
return {
"role": "user",
"content": [
{"type": "text", "text": "Please analyze the image and answer the question accurately."},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}}
]
}
def handle_excel_sales_question(self, excel_bytes: bytes, question: str) -> str:
try:
df = pd.read_excel(io.BytesIO(excel_bytes))
if 'category' in df.columns and 'sales' in df.columns:
food_only = df[df['category'].str.lower() == 'food']
total = food_only['sales'].sum()
return f"${total:.2f}"
return "[SKIPPED: Required columns not found in Excel]"
except Exception as e:
return f"[Excel processing error: {e}]"
def __call__(self, question: str, task_id: str = None) -> str:
messages = [{"role": "system", "content": self.instructions}]
if task_id:
file_data, content_type = self.fetch_file(task_id)
if isinstance(content_type, str) and "image" in content_type:
image_message = self.extract_image_prompt(file_data)
messages.append(image_message)
messages.append({"role": "user", "content": question})
try:
response = self.client.chat.completions.create(
model="gpt-4o",
messages=messages
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"[Image answer error: {e}]"
elif isinstance(content_type, str) and ("text" in content_type or "csv" in content_type or "json" in content_type):
context = file_data.decode(errors="ignore")[:3000]
messages.append({"role": "user", "content": f"File Content:\n{context}\n\nQuestion: {question}"})
elif isinstance(content_type, str) and "pdf" in content_type:
messages.append({"role": "user", "content": f"[PDF content detected]\n\nQuestion: {question}"})
elif isinstance(content_type, str) and "audio" in content_type:
messages.append({"role": "user", "content": f"[Audio content detected]\n\nQuestion: {question}"})
elif isinstance(content_type, str) and "spreadsheet" in content_type or content_type.endswith("excel") or content_type.endswith("xlsx"):
return self.handle_excel_sales_question(file_data, question)
video_context = self.extract_youtube_context(question)
if video_context:
messages.append({"role": "user", "content": f"{video_context}\n\nQuestion: {question}"})
elif not any(m["role"] == "user" for m in messages):
messages.append({"role": "user", "content": question})
try:
response = self.client.chat.completions.create(
model="gpt-4-turbo",
messages=messages,
temperature=0.0
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"[Answer error: {e}]"