dawid-lorek's picture
Update app.py
17268b7 verified
raw
history blame
3.9 kB
# app.py β€” updated for GAIA tools (file upload for audio/Excel)
import os
import requests
import pandas as pd
import gradio as gr
import asyncio
import tempfile
from agent import answer_question, transcribe_audio, extract_excel_total_food_sales
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class GAIALlamaAgent:
def __call__(self, question: str, file_path: str = None) -> str:
# Shortcut logic: if file exists and question matches specific types
if file_path:
if "mp3" in file_path:
return transcribe_audio(file_path)
elif "xlsx" in file_path or "xls" in file_path:
return extract_excel_total_food_sales(file_path)
return asyncio.run(answer_question(question))
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
username = profile.username if profile else None
if not username:
return "Please login to Hugging Face.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else ""
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"❌ Error fetching questions: {e}", None
agent = GAIALlamaAgent()
answers_payload = []
results_log = []
for item in questions_data:
qid = item.get("task_id")
question = item.get("question")
if not qid or not question:
continue
try:
answer = agent(question)
except Exception as e:
answer = f"[AGENT ERROR] {e}"
answers_payload.append({"task_id": qid, "submitted_answer": answer})
results_log.append({"Task ID": qid, "Question": question, "Submitted Answer": answer})
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
status = (
f"βœ… Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score')}%\n"
f"Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}\n"
f"Message: {result_data.get('message')}"
)
return status, pd.DataFrame(results_log)
except Exception as e:
return f"❌ Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("""
# 🧠 GAIA Agent Evaluation
Upload your files if needed and evaluate the agent's answers.
""")
gr.LoginButton()
with gr.Row():
question_box = gr.Textbox(label="Manual Question (optional)", lines=3)
file_input = gr.File(label="Optional File (.mp3 or .xlsx)", file_types=[".mp3", ".xlsx"])
submit_btn = gr.Button("Ask Agent")
output_text = gr.Textbox(label="Answer")
submit_btn.click(
fn=lambda q, f: GAIALlamaAgent()(q, f.name if f else None),
inputs=[question_box, file_input],
outputs=output_text
)
gr.Markdown("## Or run full benchmark submission")
run_btn = gr.Button("Run Evaluation & Submit All Answers")
run_out = gr.Textbox(label="Status", lines=4)
run_table = gr.DataFrame(label="Questions and Agent Answers")
run_btn.click(fn=run_and_submit_all, outputs=[run_out, run_table])
if __name__ == "__main__":
print("\nπŸ” App Starting Up...")
if os.getenv("SPACE_ID"):
print(f"πŸ”— Space: https://huggingface.co/spaces/{os.getenv('SPACE_ID')}")
demo.launch(debug=True)