Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# agent.py
|
2 |
+
|
3 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
4 |
+
from llama_index.core.agent.workflow import AgentWorkflow
|
5 |
+
from llama_index.core.tools import FunctionTool
|
6 |
+
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
|
7 |
+
from langchain_experimental.tools.python.tool import PythonREPLTool
|
8 |
+
from langchain_community.document_loaders import YoutubeLoader
|
9 |
+
|
10 |
+
# Define all tool functions with type annotations
|
11 |
+
|
12 |
+
def search_duckduckgo(query: str) -> str:
|
13 |
+
"""Use DuckDuckGo to search the internet."""
|
14 |
+
return DuckDuckGoSearchRun().run(query)
|
15 |
+
|
16 |
+
def search_wikipedia(query: str) -> str:
|
17 |
+
"""Use Wikipedia to look up facts."""
|
18 |
+
return WikipediaQueryRun(api_wrapper=None).run(query)
|
19 |
+
|
20 |
+
def run_python(code: str) -> str:
|
21 |
+
"""Execute Python code and return output."""
|
22 |
+
return PythonREPLTool().run(code)
|
23 |
+
|
24 |
+
def get_youtube_transcript(url: str) -> str:
|
25 |
+
"""Extract transcript from YouTube video."""
|
26 |
+
loader = YoutubeLoader.from_youtube_url(url, add_video_info=False)
|
27 |
+
docs = loader.load()
|
28 |
+
return " ".join(doc.page_content for doc in docs)
|
29 |
+
|
30 |
+
# Build tool wrappers
|
31 |
+
TOOLS = [
|
32 |
+
FunctionTool.from_defaults(search_duckduckgo),
|
33 |
+
FunctionTool.from_defaults(search_wikipedia),
|
34 |
+
FunctionTool.from_defaults(run_python),
|
35 |
+
FunctionTool.from_defaults(get_youtube_transcript),
|
36 |
+
]
|
37 |
+
|
38 |
+
# Load LLM
|
39 |
+
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
40 |
+
|
41 |
+
# Create LlamaIndex agent
|
42 |
+
agent = AgentWorkflow.from_tools_or_functions(
|
43 |
+
TOOLS,
|
44 |
+
llm=llm,
|
45 |
+
system_prompt="You are a helpful and smart AI agent that solves tasks using reasoning and external tools."
|
46 |
+
)
|
47 |
+
|
48 |
+
# Optional: support context (stateful runs)
|
49 |
+
from llama_index.core.workflow import Context
|
50 |
+
ctx = Context(agent)
|
51 |
+
|
52 |
+
async def answer_question(question: str) -> str:
|
53 |
+
"""Run the agent on a single question."""
|
54 |
+
return await agent.arun(question)
|