dawid-lorek commited on
Commit
6576efa
·
verified ·
1 Parent(s): 91cad6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -131
app.py CHANGED
@@ -1,116 +1,106 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
  import openai
 
7
  from smolagents.agents import ToolCallingAgent
8
  from smolagents.tools import CodeInterpreterTool
9
  from langchain_community.tools import DuckDuckGoSearchRun
10
 
 
 
 
 
11
  class SmartGAIAAgent:
12
  def __init__(self):
13
- openai.api_key = os.getenv("OPENAI_API_KEY")
 
 
 
14
 
 
15
  self.search = DuckDuckGoSearchRun()
16
  self.calculator = CodeInterpreterTool()
17
 
 
18
  self.agent = ToolCallingAgent(
19
  tools=[self.search, self.calculator],
20
- model="gpt-4", # or gpt-3.5-turbo
21
  max_steps=8,
22
  system_prompt=(
23
- "You are an expert assistant answering complex factual and reasoning questions. "
24
- "Use tools only when necessary. Only return the final answer, nothing else."
25
  )
26
  )
27
 
28
  def __call__(self, question: str) -> str:
29
  try:
30
- return self.agent.run(question)
 
31
  except Exception as e:
32
  print(f"Agent error: {e}")
33
  return "error"
34
 
35
- def run_and_submit_all( profile: gr.OAuthProfile | None):
36
- """
37
- Fetches all questions, runs the BasicAgent on them, submits all answers,
38
- and displays the results.
39
- """
40
- # --- Determine HF Space Runtime URL and Repo URL ---
41
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
-
43
  if profile:
44
- username= f"{profile.username}"
45
  print(f"User logged in: {username}")
46
  else:
47
- print("User not logged in.")
48
  return "Please Login to Hugging Face with the button.", None
49
 
50
  api_url = DEFAULT_API_URL
51
  questions_url = f"{api_url}/questions"
52
  submit_url = f"{api_url}/submit"
53
 
54
- # 1. Instantiate Agent ( modify this part to create your agent)
55
  try:
56
- agent = BasicAgent()
57
  except Exception as e:
58
- print(f"Error instantiating agent: {e}")
59
  return f"Error initializing agent: {e}", None
60
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
- print(agent_code)
63
 
64
- # 2. Fetch Questions
65
- print(f"Fetching questions from: {questions_url}")
66
  try:
67
  response = requests.get(questions_url, timeout=15)
68
  response.raise_for_status()
69
  questions_data = response.json()
70
- if not questions_data:
71
- print("Fetched questions list is empty.")
72
- return "Fetched questions list is empty or invalid format.", None
73
- print(f"Fetched {len(questions_data)} questions.")
74
- except requests.exceptions.RequestException as e:
75
- print(f"Error fetching questions: {e}")
76
- return f"Error fetching questions: {e}", None
77
- except requests.exceptions.JSONDecodeError as e:
78
- print(f"Error decoding JSON response from questions endpoint: {e}")
79
- print(f"Response text: {response.text[:500]}")
80
- return f"Error decoding server response for questions: {e}", None
81
  except Exception as e:
82
- print(f"An unexpected error occurred fetching questions: {e}")
83
- return f"An unexpected error occurred fetching questions: {e}", None
84
 
85
- # 3. Run your Agent
86
- results_log = []
87
  answers_payload = []
88
- print(f"Running agent on {len(questions_data)} questions...")
 
89
  for item in questions_data:
90
  task_id = item.get("task_id")
91
  question_text = item.get("question")
92
- if not task_id or question_text is None:
93
- print(f"Skipping item with missing task_id or question: {item}")
94
  continue
95
  try:
96
  submitted_answer = agent(question_text)
97
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
99
  except Exception as e:
100
- print(f"Error running agent on task {task_id}: {e}")
101
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
102
 
103
  if not answers_payload:
104
- print("Agent did not produce any answers to submit.")
105
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
 
107
- # 4. Prepare Submission
108
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
- print(status_update)
 
111
 
112
- # 5. Submit
113
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
  try:
115
  response = requests.post(submit_url, json=submission_data, timeout=60)
116
  response.raise_for_status()
@@ -118,92 +108,30 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
118
  final_status = (
119
  f"Submission Successful!\n"
120
  f"User: {result_data.get('username')}\n"
121
- f"Overall Score: {result_data.get('score', 'N/A')}% "
122
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
- f"Message: {result_data.get('message', 'No message received.')}"
124
  )
125
- print("Submission successful.")
126
- results_df = pd.DataFrame(results_log)
127
- return final_status, results_df
128
- except requests.exceptions.HTTPError as e:
129
- error_detail = f"Server responded with status {e.response.status_code}."
130
- try:
131
- error_json = e.response.json()
132
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
- except requests.exceptions.JSONDecodeError:
134
- error_detail += f" Response: {e.response.text[:500]}"
135
- status_message = f"Submission Failed: {error_detail}"
136
- print(status_message)
137
- results_df = pd.DataFrame(results_log)
138
- return status_message, results_df
139
- except requests.exceptions.Timeout:
140
- status_message = "Submission Failed: The request timed out."
141
- print(status_message)
142
- results_df = pd.DataFrame(results_log)
143
- return status_message, results_df
144
- except requests.exceptions.RequestException as e:
145
- status_message = f"Submission Failed: Network error - {e}"
146
- print(status_message)
147
- results_df = pd.DataFrame(results_log)
148
- return status_message, results_df
149
  except Exception as e:
150
- status_message = f"An unexpected error occurred during submission: {e}"
151
- print(status_message)
152
- results_df = pd.DataFrame(results_log)
153
- return status_message, results_df
154
 
155
-
156
- # --- Build Gradio Interface using Blocks ---
157
  with gr.Blocks() as demo:
158
- gr.Markdown("# Basic Agent Evaluation Runner")
159
- gr.Markdown(
160
- """
161
- **Instructions:**
162
-
163
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
164
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
165
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
166
-
167
- ---
168
- **Disclaimers:**
169
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
170
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
171
- """
172
- )
173
-
174
  gr.LoginButton()
175
-
176
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
177
 
178
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
179
- # Removed max_rows=10 from DataFrame constructor
180
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
181
-
182
- run_button.click(
183
- fn=run_and_submit_all,
184
- outputs=[status_output, results_table]
185
- )
186
 
187
  if __name__ == "__main__":
188
- print("\n" + "-"*30 + " App Starting " + "-"*30)
189
- # Check for SPACE_HOST and SPACE_ID at startup for information
190
- space_host_startup = os.getenv("SPACE_HOST")
191
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
-
193
- if space_host_startup:
194
- print(f"✅ SPACE_HOST found: {space_host_startup}")
195
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
- else:
197
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
-
199
- if space_id_startup: # Print repo URLs if SPACE_ID is found
200
- print(f"✅ SPACE_ID found: {space_id_startup}")
201
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
- else:
204
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
-
206
- print("-"*(60 + len(" App Starting ")) + "\n")
207
-
208
- print("Launching Gradio Interface for Basic Agent Evaluation...")
209
  demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
  import openai
6
+
7
  from smolagents.agents import ToolCallingAgent
8
  from smolagents.tools import CodeInterpreterTool
9
  from langchain_community.tools import DuckDuckGoSearchRun
10
 
11
+ # Constants
12
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
+
14
+ # --- Agent Definition with Tools ---
15
  class SmartGAIAAgent:
16
  def __init__(self):
17
+ self.api_key = os.getenv("OPENAI_API_KEY")
18
+ if not self.api_key:
19
+ raise ValueError("Missing OPENAI_API_KEY")
20
+ openai.api_key = self.api_key
21
 
22
+ # Define tools
23
  self.search = DuckDuckGoSearchRun()
24
  self.calculator = CodeInterpreterTool()
25
 
26
+ # Create tool-using agent
27
  self.agent = ToolCallingAgent(
28
  tools=[self.search, self.calculator],
29
+ model="gpt-4",
30
  max_steps=8,
31
  system_prompt=(
32
+ "You are a helpful assistant solving complex reasoning and factual questions. "
33
+ "Use tools only if needed. Return only the final answer. Do not add explanations or formatting."
34
  )
35
  )
36
 
37
  def __call__(self, question: str) -> str:
38
  try:
39
+ result = self.agent.run(question)
40
+ return result.strip()
41
  except Exception as e:
42
  print(f"Agent error: {e}")
43
  return "error"
44
 
45
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
46
+ space_id = os.getenv("SPACE_ID")
 
 
 
 
 
 
47
  if profile:
48
+ username = f"{profile.username}"
49
  print(f"User logged in: {username}")
50
  else:
 
51
  return "Please Login to Hugging Face with the button.", None
52
 
53
  api_url = DEFAULT_API_URL
54
  questions_url = f"{api_url}/questions"
55
  submit_url = f"{api_url}/submit"
56
 
 
57
  try:
58
+ agent = SmartGAIAAgent()
59
  except Exception as e:
 
60
  return f"Error initializing agent: {e}", None
61
+
62
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
63
+ print(f"Code link: {agent_code}")
64
 
 
 
65
  try:
66
  response = requests.get(questions_url, timeout=15)
67
  response.raise_for_status()
68
  questions_data = response.json()
 
 
 
 
 
 
 
 
 
 
 
69
  except Exception as e:
70
+ return f"Error fetching questions: {e}", None
 
71
 
 
 
72
  answers_payload = []
73
+ results_log = []
74
+
75
  for item in questions_data:
76
  task_id = item.get("task_id")
77
  question_text = item.get("question")
78
+ if not task_id or not question_text:
 
79
  continue
80
  try:
81
  submitted_answer = agent(question_text)
82
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
83
+ results_log.append({
84
+ "Task ID": task_id,
85
+ "Question": question_text,
86
+ "Submitted Answer": submitted_answer
87
+ })
88
  except Exception as e:
89
+ results_log.append({
90
+ "Task ID": task_id,
91
+ "Question": question_text,
92
+ "Submitted Answer": f"ERROR: {e}"
93
+ })
94
 
95
  if not answers_payload:
96
+ return "No answers were submitted.", pd.DataFrame(results_log)
 
97
 
98
+ submission_data = {
99
+ "username": username,
100
+ "agent_code": agent_code,
101
+ "answers": answers_payload
102
+ }
103
 
 
 
104
  try:
105
  response = requests.post(submit_url, json=submission_data, timeout=60)
106
  response.raise_for_status()
 
108
  final_status = (
109
  f"Submission Successful!\n"
110
  f"User: {result_data.get('username')}\n"
111
+ f"Score: {result_data.get('score')}% "
112
+ f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
113
+ f"Message: {result_data.get('message')}"
114
  )
115
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  except Exception as e:
117
+ return f"Submission failed: {e}", pd.DataFrame(results_log)
 
 
 
118
 
119
+ # --- Gradio Interface ---
 
120
  with gr.Blocks() as demo:
121
+ gr.Markdown("# GAIA Agent Evaluation")
122
+ gr.Markdown("""
123
+ **Instructions:**
124
+ 1. Log in to Hugging Face
125
+ 2. Click 'Run Evaluation' to generate and submit answers
126
+ 3. Wait for the results
127
+ """)
 
 
 
 
 
 
 
 
 
128
  gr.LoginButton()
 
129
  run_button = gr.Button("Run Evaluation & Submit All Answers")
130
+ status_output = gr.Textbox(label="Submission Status", lines=5)
131
+ results_table = gr.DataFrame(label="Results")
132
 
133
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
 
 
 
 
134
 
135
  if __name__ == "__main__":
136
+ print("Launching Gradio Interface...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  demo.launch(debug=True, share=False)