Update app.py
Browse files
app.py
CHANGED
@@ -1,116 +1,106 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
import openai
|
|
|
7 |
from smolagents.agents import ToolCallingAgent
|
8 |
from smolagents.tools import CodeInterpreterTool
|
9 |
from langchain_community.tools import DuckDuckGoSearchRun
|
10 |
|
|
|
|
|
|
|
|
|
11 |
class SmartGAIAAgent:
|
12 |
def __init__(self):
|
13 |
-
|
|
|
|
|
|
|
14 |
|
|
|
15 |
self.search = DuckDuckGoSearchRun()
|
16 |
self.calculator = CodeInterpreterTool()
|
17 |
|
|
|
18 |
self.agent = ToolCallingAgent(
|
19 |
tools=[self.search, self.calculator],
|
20 |
-
model="gpt-4",
|
21 |
max_steps=8,
|
22 |
system_prompt=(
|
23 |
-
"You are
|
24 |
-
"Use tools only
|
25 |
)
|
26 |
)
|
27 |
|
28 |
def __call__(self, question: str) -> str:
|
29 |
try:
|
30 |
-
|
|
|
31 |
except Exception as e:
|
32 |
print(f"Agent error: {e}")
|
33 |
return "error"
|
34 |
|
35 |
-
def run_and_submit_all(
|
36 |
-
""
|
37 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
38 |
-
and displays the results.
|
39 |
-
"""
|
40 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
-
|
43 |
if profile:
|
44 |
-
username= f"{profile.username}"
|
45 |
print(f"User logged in: {username}")
|
46 |
else:
|
47 |
-
print("User not logged in.")
|
48 |
return "Please Login to Hugging Face with the button.", None
|
49 |
|
50 |
api_url = DEFAULT_API_URL
|
51 |
questions_url = f"{api_url}/questions"
|
52 |
submit_url = f"{api_url}/submit"
|
53 |
|
54 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
55 |
try:
|
56 |
-
agent =
|
57 |
except Exception as e:
|
58 |
-
print(f"Error instantiating agent: {e}")
|
59 |
return f"Error initializing agent: {e}", None
|
60 |
-
|
61 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
-
print(agent_code)
|
63 |
|
64 |
-
# 2. Fetch Questions
|
65 |
-
print(f"Fetching questions from: {questions_url}")
|
66 |
try:
|
67 |
response = requests.get(questions_url, timeout=15)
|
68 |
response.raise_for_status()
|
69 |
questions_data = response.json()
|
70 |
-
if not questions_data:
|
71 |
-
print("Fetched questions list is empty.")
|
72 |
-
return "Fetched questions list is empty or invalid format.", None
|
73 |
-
print(f"Fetched {len(questions_data)} questions.")
|
74 |
-
except requests.exceptions.RequestException as e:
|
75 |
-
print(f"Error fetching questions: {e}")
|
76 |
-
return f"Error fetching questions: {e}", None
|
77 |
-
except requests.exceptions.JSONDecodeError as e:
|
78 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
-
print(f"Response text: {response.text[:500]}")
|
80 |
-
return f"Error decoding server response for questions: {e}", None
|
81 |
except Exception as e:
|
82 |
-
|
83 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
|
85 |
-
# 3. Run your Agent
|
86 |
-
results_log = []
|
87 |
answers_payload = []
|
88 |
-
|
|
|
89 |
for item in questions_data:
|
90 |
task_id = item.get("task_id")
|
91 |
question_text = item.get("question")
|
92 |
-
if not task_id or question_text
|
93 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
continue
|
95 |
try:
|
96 |
submitted_answer = agent(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
if not answers_payload:
|
104 |
-
|
105 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
# 5. Submit
|
113 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
114 |
try:
|
115 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
116 |
response.raise_for_status()
|
@@ -118,92 +108,30 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
118 |
final_status = (
|
119 |
f"Submission Successful!\n"
|
120 |
f"User: {result_data.get('username')}\n"
|
121 |
-
f"
|
122 |
-
f"({result_data.get('correct_count'
|
123 |
-
f"Message: {result_data.get('message'
|
124 |
)
|
125 |
-
|
126 |
-
results_df = pd.DataFrame(results_log)
|
127 |
-
return final_status, results_df
|
128 |
-
except requests.exceptions.HTTPError as e:
|
129 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
130 |
-
try:
|
131 |
-
error_json = e.response.json()
|
132 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
133 |
-
except requests.exceptions.JSONDecodeError:
|
134 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
135 |
-
status_message = f"Submission Failed: {error_detail}"
|
136 |
-
print(status_message)
|
137 |
-
results_df = pd.DataFrame(results_log)
|
138 |
-
return status_message, results_df
|
139 |
-
except requests.exceptions.Timeout:
|
140 |
-
status_message = "Submission Failed: The request timed out."
|
141 |
-
print(status_message)
|
142 |
-
results_df = pd.DataFrame(results_log)
|
143 |
-
return status_message, results_df
|
144 |
-
except requests.exceptions.RequestException as e:
|
145 |
-
status_message = f"Submission Failed: Network error - {e}"
|
146 |
-
print(status_message)
|
147 |
-
results_df = pd.DataFrame(results_log)
|
148 |
-
return status_message, results_df
|
149 |
except Exception as e:
|
150 |
-
|
151 |
-
print(status_message)
|
152 |
-
results_df = pd.DataFrame(results_log)
|
153 |
-
return status_message, results_df
|
154 |
|
155 |
-
|
156 |
-
# --- Build Gradio Interface using Blocks ---
|
157 |
with gr.Blocks() as demo:
|
158 |
-
gr.Markdown("#
|
159 |
-
gr.Markdown(
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
166 |
-
|
167 |
-
---
|
168 |
-
**Disclaimers:**
|
169 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
170 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
171 |
-
"""
|
172 |
-
)
|
173 |
-
|
174 |
gr.LoginButton()
|
175 |
-
|
176 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
# Removed max_rows=10 from DataFrame constructor
|
180 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
181 |
-
|
182 |
-
run_button.click(
|
183 |
-
fn=run_and_submit_all,
|
184 |
-
outputs=[status_output, results_table]
|
185 |
-
)
|
186 |
|
187 |
if __name__ == "__main__":
|
188 |
-
print("
|
189 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
190 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
191 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
192 |
-
|
193 |
-
if space_host_startup:
|
194 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
195 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
196 |
-
else:
|
197 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
198 |
-
|
199 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
200 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
201 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
202 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
203 |
-
else:
|
204 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
205 |
-
|
206 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
207 |
-
|
208 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
209 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
import openai
|
6 |
+
|
7 |
from smolagents.agents import ToolCallingAgent
|
8 |
from smolagents.tools import CodeInterpreterTool
|
9 |
from langchain_community.tools import DuckDuckGoSearchRun
|
10 |
|
11 |
+
# Constants
|
12 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
|
14 |
+
# --- Agent Definition with Tools ---
|
15 |
class SmartGAIAAgent:
|
16 |
def __init__(self):
|
17 |
+
self.api_key = os.getenv("OPENAI_API_KEY")
|
18 |
+
if not self.api_key:
|
19 |
+
raise ValueError("Missing OPENAI_API_KEY")
|
20 |
+
openai.api_key = self.api_key
|
21 |
|
22 |
+
# Define tools
|
23 |
self.search = DuckDuckGoSearchRun()
|
24 |
self.calculator = CodeInterpreterTool()
|
25 |
|
26 |
+
# Create tool-using agent
|
27 |
self.agent = ToolCallingAgent(
|
28 |
tools=[self.search, self.calculator],
|
29 |
+
model="gpt-4",
|
30 |
max_steps=8,
|
31 |
system_prompt=(
|
32 |
+
"You are a helpful assistant solving complex reasoning and factual questions. "
|
33 |
+
"Use tools only if needed. Return only the final answer. Do not add explanations or formatting."
|
34 |
)
|
35 |
)
|
36 |
|
37 |
def __call__(self, question: str) -> str:
|
38 |
try:
|
39 |
+
result = self.agent.run(question)
|
40 |
+
return result.strip()
|
41 |
except Exception as e:
|
42 |
print(f"Agent error: {e}")
|
43 |
return "error"
|
44 |
|
45 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
46 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
if profile:
|
48 |
+
username = f"{profile.username}"
|
49 |
print(f"User logged in: {username}")
|
50 |
else:
|
|
|
51 |
return "Please Login to Hugging Face with the button.", None
|
52 |
|
53 |
api_url = DEFAULT_API_URL
|
54 |
questions_url = f"{api_url}/questions"
|
55 |
submit_url = f"{api_url}/submit"
|
56 |
|
|
|
57 |
try:
|
58 |
+
agent = SmartGAIAAgent()
|
59 |
except Exception as e:
|
|
|
60 |
return f"Error initializing agent: {e}", None
|
61 |
+
|
62 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
+
print(f"Code link: {agent_code}")
|
64 |
|
|
|
|
|
65 |
try:
|
66 |
response = requests.get(questions_url, timeout=15)
|
67 |
response.raise_for_status()
|
68 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
except Exception as e:
|
70 |
+
return f"Error fetching questions: {e}", None
|
|
|
71 |
|
|
|
|
|
72 |
answers_payload = []
|
73 |
+
results_log = []
|
74 |
+
|
75 |
for item in questions_data:
|
76 |
task_id = item.get("task_id")
|
77 |
question_text = item.get("question")
|
78 |
+
if not task_id or not question_text:
|
|
|
79 |
continue
|
80 |
try:
|
81 |
submitted_answer = agent(question_text)
|
82 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
83 |
+
results_log.append({
|
84 |
+
"Task ID": task_id,
|
85 |
+
"Question": question_text,
|
86 |
+
"Submitted Answer": submitted_answer
|
87 |
+
})
|
88 |
except Exception as e:
|
89 |
+
results_log.append({
|
90 |
+
"Task ID": task_id,
|
91 |
+
"Question": question_text,
|
92 |
+
"Submitted Answer": f"ERROR: {e}"
|
93 |
+
})
|
94 |
|
95 |
if not answers_payload:
|
96 |
+
return "No answers were submitted.", pd.DataFrame(results_log)
|
|
|
97 |
|
98 |
+
submission_data = {
|
99 |
+
"username": username,
|
100 |
+
"agent_code": agent_code,
|
101 |
+
"answers": answers_payload
|
102 |
+
}
|
103 |
|
|
|
|
|
104 |
try:
|
105 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
106 |
response.raise_for_status()
|
|
|
108 |
final_status = (
|
109 |
f"Submission Successful!\n"
|
110 |
f"User: {result_data.get('username')}\n"
|
111 |
+
f"Score: {result_data.get('score')}% "
|
112 |
+
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
|
113 |
+
f"Message: {result_data.get('message')}"
|
114 |
)
|
115 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
118 |
|
119 |
+
# --- Gradio Interface ---
|
|
|
120 |
with gr.Blocks() as demo:
|
121 |
+
gr.Markdown("# GAIA Agent Evaluation")
|
122 |
+
gr.Markdown("""
|
123 |
+
**Instructions:**
|
124 |
+
1. Log in to Hugging Face
|
125 |
+
2. Click 'Run Evaluation' to generate and submit answers
|
126 |
+
3. Wait for the results
|
127 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
gr.LoginButton()
|
|
|
129 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
130 |
+
status_output = gr.Textbox(label="Submission Status", lines=5)
|
131 |
+
results_table = gr.DataFrame(label="Results")
|
132 |
|
133 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
+
print("Launching Gradio Interface...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
demo.launch(debug=True, share=False)
|