Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,151 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
import pandas as pd
|
5 |
import time
|
6 |
import re
|
7 |
-
|
|
|
|
|
|
|
8 |
from langchain_openai import ChatOpenAI
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
from langchain.agents import AgentExecutor, create_react_agent
|
11 |
from langchain.memory import ConversationSummaryMemory
|
12 |
-
from
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
|
17 |
-
# Constants
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
prompt = PromptTemplate(
|
22 |
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
|
23 |
template="""
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
-
# === AGENT
|
34 |
class BasicAgent:
|
35 |
def __init__(
|
36 |
self,
|
37 |
-
agent,
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
):
|
40 |
-
self.agent = agent
|
41 |
-
self.tools = tools
|
42 |
-
self.verbose = verbose
|
43 |
-
self.handle_parsing_errors = handle_parsing_errors
|
44 |
-
self.max_iterations = max_iterations
|
45 |
-
self.memory = memory
|
46 |
self.agent_obj = AgentExecutor(
|
47 |
-
agent=
|
48 |
-
tools=
|
49 |
-
verbose=
|
50 |
-
handle_parsing_errors=
|
51 |
-
max_iterations=
|
52 |
-
memory=
|
53 |
)
|
54 |
|
55 |
def __call__(self, question: str) -> str:
|
@@ -61,9 +157,8 @@ class BasicAgent:
|
|
61 |
|
62 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
63 |
space_id = os.getenv("SPACE_ID")
|
64 |
-
|
65 |
if profile:
|
66 |
-
username
|
67 |
print(f"User logged in: {username}")
|
68 |
else:
|
69 |
print("User not logged in.")
|
@@ -73,42 +168,30 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
73 |
questions_url = f"{api_url}/questions"
|
74 |
submit_url = f"{api_url}/submit"
|
75 |
|
76 |
-
# OpenAI API key only!
|
77 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
78 |
if not openai_api_key:
|
79 |
print("OpenAI API key not found in environment variables.")
|
80 |
return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None
|
|
|
81 |
|
82 |
-
# Use GPT-4o (or another allowed OpenAI model)
|
83 |
llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)
|
84 |
|
85 |
-
# Tools: only offline/tools not requiring other APIs
|
86 |
-
tools = [
|
87 |
-
repl_tool,
|
88 |
-
file_saver_tool,
|
89 |
-
audio_transcriber_tool,
|
90 |
-
gemini_multimodal_tool, # If this is purely local or adapted for OpenAI images, otherwise remove!
|
91 |
-
wikipedia_search_tool2
|
92 |
-
]
|
93 |
-
|
94 |
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")
|
95 |
|
96 |
summary_react_agent = create_react_agent(
|
97 |
llm=llm_client,
|
98 |
-
tools=
|
99 |
prompt=prompt
|
100 |
)
|
101 |
|
102 |
-
# 1. Instantiate Agent
|
103 |
try:
|
104 |
-
agent = BasicAgent(summary_react_agent,
|
105 |
except Exception as e:
|
106 |
print(f"Error instantiating agent: {e}")
|
107 |
return f"Error initializing agent: {e}", None
|
108 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
109 |
print(agent_code)
|
110 |
|
111 |
-
# 2. Fetch Questions
|
112 |
print(f"Fetching questions from: {questions_url}")
|
113 |
try:
|
114 |
response = requests.get(questions_url, timeout=15)
|
@@ -118,11 +201,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
118 |
print("Fetched questions list is empty.")
|
119 |
return "Fetched questions list is empty or invalid format.", None
|
120 |
print(f"Fetched {len(questions_data)} questions.")
|
121 |
-
except
|
122 |
print(f"Error fetching questions: {e}")
|
123 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
# 3. Run your Agent
|
126 |
results_log = []
|
127 |
answers_payload = []
|
128 |
print(f"Running agent on {len(questions_data)} questions...")
|
@@ -132,17 +221,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
132 |
file_name = item.get("file_name")
|
133 |
full_question_for_agent = question_text
|
134 |
if file_name:
|
135 |
-
attachment_url = f"
|
136 |
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
|
137 |
-
print(f"Running agent on task {task_id}: {full_question_for_agent}",
|
138 |
try:
|
139 |
submitted_answer = agent(full_question_for_agent)
|
140 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
141 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
142 |
-
time.sleep(
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
|
146 |
|
147 |
if not answers_payload:
|
148 |
print("Agent did not produce any answers to submit.")
|
@@ -164,27 +253,28 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
164 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
165 |
f"Message: {result_data.get('message', 'No message received.')}"
|
166 |
)
|
167 |
-
|
|
|
|
|
168 |
results_df = pd.DataFrame(results_log)
|
169 |
return cleaned_final_status, results_df
|
170 |
except Exception as e:
|
171 |
-
|
|
|
172 |
results_df = pd.DataFrame(results_log)
|
173 |
-
return
|
174 |
|
175 |
-
# ---
|
176 |
with gr.Blocks() as demo:
|
177 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
178 |
gr.Markdown(
|
179 |
"""
|
180 |
**Instructions:**
|
181 |
-
1.
|
182 |
-
2.
|
183 |
-
|
184 |
-
**Note:** Only OpenAI API key is needed!
|
185 |
"""
|
186 |
)
|
187 |
-
|
188 |
gr.LoginButton()
|
189 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
190 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
1 |
+
import requests
|
2 |
import os
|
3 |
import gradio as gr
|
|
|
4 |
import pandas as pd
|
5 |
import time
|
6 |
import re
|
7 |
+
import json
|
8 |
+
import wikipedia
|
9 |
+
import speech_recognition as sr
|
10 |
+
from pydub import AudioSegment
|
11 |
from langchain_openai import ChatOpenAI
|
|
|
12 |
from langchain.agents import AgentExecutor, create_react_agent
|
13 |
from langchain.memory import ConversationSummaryMemory
|
14 |
+
from langchain.tools import Tool
|
15 |
+
from langchain_experimental.utilities import PythonREPL
|
16 |
+
from langchain_community.document_loaders import WikipediaLoader
|
17 |
+
from langchain.prompts import PromptTemplate
|
18 |
|
19 |
+
# --- Constants ---
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
|
22 |
+
# === TOOL: python_repl ===
|
23 |
+
python_repl = PythonREPL()
|
24 |
+
repl_tool = Tool(
|
25 |
+
name="python_repl",
|
26 |
+
description="A Python REPL (Read-Eval-Print Loop) for calculations, parsing, and data manipulation. Input must be valid Python. Use print() to output your answer.",
|
27 |
+
func=python_repl.run,
|
28 |
+
)
|
29 |
+
|
30 |
+
# === TOOL: file_saver ===
|
31 |
+
def download_and_save_file(args: dict) -> str:
|
32 |
+
try:
|
33 |
+
if isinstance(args, str):
|
34 |
+
args = json.loads(args)
|
35 |
+
url = args.get("url")
|
36 |
+
local_filename = args.get("local_filename")
|
37 |
+
if not url or not local_filename:
|
38 |
+
return "Error: Both 'url' and 'local_filename' must be provided."
|
39 |
+
response = requests.get(url, stream=True, timeout=30)
|
40 |
+
response.raise_for_status()
|
41 |
+
os.makedirs(os.path.dirname(local_filename) or '.', exist_ok=True)
|
42 |
+
with open(local_filename, 'wb') as f:
|
43 |
+
for chunk in response.iter_content(chunk_size=8192):
|
44 |
+
f.write(chunk)
|
45 |
+
return f"File downloaded successfully to {local_filename}"
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error downloading file: {e}"
|
48 |
+
|
49 |
+
file_saver_tool = Tool(
|
50 |
+
name="file_saver",
|
51 |
+
description="Downloads a file from a URL and saves it as the given local filename. Input: JSON with 'url' and 'local_filename'.",
|
52 |
+
func=download_and_save_file,
|
53 |
+
)
|
54 |
+
|
55 |
+
# === TOOL: audio_transcriber_tool ===
|
56 |
+
def transcribe_audio_from_path(local_audio_path: str, language: str = "en-US") -> str:
|
57 |
+
r = sr.Recognizer()
|
58 |
+
temp_wav_path = "temp_audio_to_transcribe.wav"
|
59 |
+
transcribed_text = ""
|
60 |
+
try:
|
61 |
+
if local_audio_path.startswith("http://") or local_audio_path.startswith("https://"):
|
62 |
+
return "Error: Only local file paths allowed. Use 'file_saver' first."
|
63 |
+
if not os.path.exists(local_audio_path):
|
64 |
+
return f"Error: File not found: '{local_audio_path}'."
|
65 |
+
audio = AudioSegment.from_file(local_audio_path)
|
66 |
+
audio.export(temp_wav_path, format="wav")
|
67 |
+
with sr.AudioFile(temp_wav_path) as source:
|
68 |
+
audio_listened = r.record(source)
|
69 |
+
try:
|
70 |
+
transcribed_text = r.recognize_google(audio_listened, language=language)
|
71 |
+
except sr.UnknownValueError:
|
72 |
+
return "Could not understand audio."
|
73 |
+
except sr.RequestError as e:
|
74 |
+
return f"Could not request results from Google Speech Recognition; {e}"
|
75 |
+
except Exception as e:
|
76 |
+
return f"Error: {e}"
|
77 |
+
finally:
|
78 |
+
if os.path.exists(temp_wav_path):
|
79 |
+
os.remove(temp_wav_path)
|
80 |
+
return transcribed_text.strip()
|
81 |
+
|
82 |
+
audio_transcriber_tool = Tool(
|
83 |
+
name="audio_transcriber_tool",
|
84 |
+
description="Transcribes audio from a local file path to text. Input: path to audio file (e.g., 'myfile.mp3'). Use 'file_saver' to download first. Optionally set language.",
|
85 |
+
func=transcribe_audio_from_path,
|
86 |
+
)
|
87 |
+
|
88 |
+
# === TOOL: wikipedia_search_tool2 ===
|
89 |
+
def wiki_search(query: str) -> str:
|
90 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
91 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
92 |
+
[
|
93 |
+
f'<Document source="{doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
94 |
+
for doc in search_docs
|
95 |
+
])
|
96 |
+
return formatted_search_docs
|
97 |
+
|
98 |
+
wikipedia_search_tool2 = Tool(
|
99 |
+
name="wikipedia_search_tool2",
|
100 |
+
description="Search Wikipedia for a query and return up to 2 results. Input: query string.",
|
101 |
+
func=wiki_search,
|
102 |
+
)
|
103 |
+
|
104 |
+
# === PROMPT ===
|
105 |
prompt = PromptTemplate(
|
106 |
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
|
107 |
template="""
|
108 |
+
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks.
|
109 |
+
STRICT FINAL ANSWER RULES:
|
110 |
+
- Final Answer must be a number, a few words, or a comma-separated list, as requested.
|
111 |
+
- No units or extra punctuation unless asked.
|
112 |
+
Your response must start with 'Thought:' and finish with 'Final Answer:'.
|
113 |
+
You have access to the following tools:
|
114 |
+
{tools}
|
115 |
+
Use this format:
|
116 |
+
Thought: [thinking]
|
117 |
+
Action: [tool_name]
|
118 |
+
Action Input: [input]
|
119 |
+
Observation: [result]
|
120 |
+
...
|
121 |
+
Thought: [done]
|
122 |
+
Final Answer: [concise answer]
|
123 |
+
|
124 |
+
{chat_history}
|
125 |
+
New input: {input}
|
126 |
+
---
|
127 |
+
{agent_scratchpad}
|
128 |
+
"""
|
129 |
)
|
130 |
|
131 |
+
# === AGENT ===
|
132 |
class BasicAgent:
|
133 |
def __init__(
|
134 |
self,
|
135 |
+
agent,
|
136 |
+
tools,
|
137 |
+
verbose=False,
|
138 |
+
handle_parsing_errors=True,
|
139 |
+
max_iterations=9,
|
140 |
+
memory=None
|
141 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
self.agent_obj = AgentExecutor(
|
143 |
+
agent=agent,
|
144 |
+
tools=tools,
|
145 |
+
verbose=verbose,
|
146 |
+
handle_parsing_errors=handle_parsing_errors,
|
147 |
+
max_iterations=max_iterations,
|
148 |
+
memory=memory
|
149 |
)
|
150 |
|
151 |
def __call__(self, question: str) -> str:
|
|
|
157 |
|
158 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
159 |
space_id = os.getenv("SPACE_ID")
|
|
|
160 |
if profile:
|
161 |
+
username= f"{profile.username}"
|
162 |
print(f"User logged in: {username}")
|
163 |
else:
|
164 |
print("User not logged in.")
|
|
|
168 |
questions_url = f"{api_url}/questions"
|
169 |
submit_url = f"{api_url}/submit"
|
170 |
|
|
|
171 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
172 |
if not openai_api_key:
|
173 |
print("OpenAI API key not found in environment variables.")
|
174 |
return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None
|
175 |
+
print(f"Using OpenAI API key: {openai_api_key[:4]}... (truncated for security)")
|
176 |
|
|
|
177 |
llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")
|
180 |
|
181 |
summary_react_agent = create_react_agent(
|
182 |
llm=llm_client,
|
183 |
+
tools=[repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2],
|
184 |
prompt=prompt
|
185 |
)
|
186 |
|
|
|
187 |
try:
|
188 |
+
agent = BasicAgent(summary_react_agent, [repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2], True, True, 30, summary_memory)
|
189 |
except Exception as e:
|
190 |
print(f"Error instantiating agent: {e}")
|
191 |
return f"Error initializing agent: {e}", None
|
192 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
193 |
print(agent_code)
|
194 |
|
|
|
195 |
print(f"Fetching questions from: {questions_url}")
|
196 |
try:
|
197 |
response = requests.get(questions_url, timeout=15)
|
|
|
201 |
print("Fetched questions list is empty.")
|
202 |
return "Fetched questions list is empty or invalid format.", None
|
203 |
print(f"Fetched {len(questions_data)} questions.")
|
204 |
+
except requests.exceptions.RequestException as e:
|
205 |
print(f"Error fetching questions: {e}")
|
206 |
return f"Error fetching questions: {e}", None
|
207 |
+
except requests.exceptions.JSONDecodeError as e:
|
208 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
209 |
+
print(f"Response text: {response.text[:500]}")
|
210 |
+
return f"Error decoding server response for questions: {e}", None
|
211 |
+
except Exception as e:
|
212 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
213 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
214 |
|
|
|
215 |
results_log = []
|
216 |
answers_payload = []
|
217 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
221 |
file_name = item.get("file_name")
|
222 |
full_question_for_agent = question_text
|
223 |
if file_name:
|
224 |
+
attachment_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
225 |
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
|
226 |
+
print(f"Running agent on task {task_id}: {full_question_for_agent}",flush=True)
|
227 |
try:
|
228 |
submitted_answer = agent(full_question_for_agent)
|
229 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
230 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
231 |
+
time.sleep(1)
|
232 |
except Exception as e:
|
233 |
+
print(f"Error running agent on task {task_id}: {e}")
|
234 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
235 |
|
236 |
if not answers_payload:
|
237 |
print("Agent did not produce any answers to submit.")
|
|
|
253 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
254 |
f"Message: {result_data.get('message', 'No message received.')}"
|
255 |
)
|
256 |
+
print("Submission successful.")
|
257 |
+
cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status)
|
258 |
+
cleaned_final_status = cleaned_final_status.strip()
|
259 |
results_df = pd.DataFrame(results_log)
|
260 |
return cleaned_final_status, results_df
|
261 |
except Exception as e:
|
262 |
+
status_message = f"Submission Failed: {e}"
|
263 |
+
print(status_message)
|
264 |
results_df = pd.DataFrame(results_log)
|
265 |
+
return status_message, results_df
|
266 |
|
267 |
+
# --- Gradio Interface ---
|
268 |
with gr.Blocks() as demo:
|
269 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
270 |
gr.Markdown(
|
271 |
"""
|
272 |
**Instructions:**
|
273 |
+
1. Clone this space and modify the code as needed.
|
274 |
+
2. Log in to your Hugging Face account below.
|
275 |
+
3. Click 'Run Evaluation & Submit All Answers' to see your score!
|
|
|
276 |
"""
|
277 |
)
|
|
|
278 |
gr.LoginButton()
|
279 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
280 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|