Update agent.py
Browse files
agent.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
import os
|
3 |
import re
|
4 |
import io
|
@@ -24,22 +24,46 @@ class GaiaAgent:
|
|
24 |
except:
|
25 |
return None, None
|
26 |
|
27 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
except:
|
31 |
-
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
try:
|
|
|
35 |
response = self.client.chat.completions.create(
|
36 |
model="gpt-4-turbo",
|
37 |
messages=[
|
38 |
-
{"role": "system", "content": "
|
39 |
-
{"role": "user", "content":
|
40 |
],
|
41 |
temperature=0,
|
42 |
-
timeout=
|
43 |
)
|
44 |
return response.choices[0].message.content.strip()
|
45 |
except:
|
@@ -51,7 +75,7 @@ class GaiaAgent:
|
|
51 |
if "image" in ctype:
|
52 |
b64 = base64.b64encode(content).decode("utf-8")
|
53 |
messages = [
|
54 |
-
{"role": "system", "content": "You're a chess analyst. Return only the best move for Black that guarantees a win. Use algebraic notation
|
55 |
{"role": "user", "content": [
|
56 |
{"type": "text", "text": question},
|
57 |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}}
|
@@ -76,55 +100,20 @@ class GaiaAgent:
|
|
76 |
return "$0.00"
|
77 |
return content.decode("utf-8", errors="ignore")[:3000]
|
78 |
|
79 |
-
def extract_commutativity_set(self, question):
|
80 |
-
try:
|
81 |
-
lines = question.splitlines()
|
82 |
-
S, table = [], {}
|
83 |
-
for line in lines:
|
84 |
-
if line.startswith("|*"):
|
85 |
-
S = line.strip().split("|")[2:]
|
86 |
-
elif line.startswith("|") and len(line.strip().split("|")) > 2:
|
87 |
-
parts = line.strip().split("|")[1:-1]
|
88 |
-
row_key, values = parts[0], parts[1:]
|
89 |
-
table[row_key] = values
|
90 |
-
non_comm = set()
|
91 |
-
for x in S:
|
92 |
-
for y in S:
|
93 |
-
if table[x][S.index(y)] != table[y][S.index(x)]:
|
94 |
-
non_comm.update([x, y])
|
95 |
-
return ", ".join(sorted(non_comm))
|
96 |
-
except:
|
97 |
-
return ""
|
98 |
-
|
99 |
-
def validate_format(self, answer, question):
|
100 |
-
q = question.lower()
|
101 |
-
a = answer.strip()
|
102 |
-
if "algebraic notation" in q:
|
103 |
-
return bool(re.fullmatch(r"[KQBNR]?[a-h]?[1-8]?x?[a-h][1-8][+#]?", a))
|
104 |
-
if "usd with two decimal places" in q:
|
105 |
-
return bool(re.fullmatch(r"\$\d+\.\d{2}", a))
|
106 |
-
if "ioc country code" in q:
|
107 |
-
return bool(re.fullmatch(r"[A-Z]{3}", a.strip()))
|
108 |
-
if "award number" in q:
|
109 |
-
return bool(re.fullmatch(r"80NSSC[0-9A-Z]{6,7}", a))
|
110 |
-
return True
|
111 |
-
|
112 |
def format_answer(self, raw, question):
|
113 |
raw = raw.strip().strip("\"'")
|
114 |
q = question.lower()
|
115 |
-
if "commutative" in q:
|
116 |
-
return self.extract_commutativity_set(question)
|
117 |
if "algebraic notation" in q:
|
118 |
match = re.search(r"[KQBNR]?[a-h]?[1-8]?x?[a-h][1-8][+#]?", raw)
|
119 |
return match.group(0) if match else raw
|
120 |
if "award number" in q:
|
121 |
match = re.search(r"80NSSC[0-9A-Z]+", raw)
|
122 |
return match.group(0) if match else raw
|
123 |
-
if "first name" in q:
|
124 |
-
return raw.split()[0]
|
125 |
if "usd" in q:
|
126 |
m = re.search(r"\d+(\.\d{2})", raw)
|
127 |
return f"${m.group()}" if m else "$0.00"
|
|
|
|
|
128 |
try:
|
129 |
return str(w2n.word_to_num(raw))
|
130 |
except:
|
@@ -133,6 +122,11 @@ class GaiaAgent:
|
|
133 |
|
134 |
def __call__(self, question, task_id=None):
|
135 |
file, ctype = self.fetch_file(task_id) if task_id else (None, None)
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
138 |
return self.format_answer(raw, question)
|
|
|
1 |
+
# agent_v41.py — Agent analizujący każde pytanie krok po kroku i szukający odpowiedzi zewnętrznie
|
2 |
import os
|
3 |
import re
|
4 |
import io
|
|
|
24 |
except:
|
25 |
return None, None
|
26 |
|
27 |
+
def get_step_by_step_plan(self, question):
|
28 |
+
steps_prompt = f"""
|
29 |
+
You are an expert planner. Break down the question into a clear plan with 2–5 steps.
|
30 |
+
|
31 |
+
Question: {question}
|
32 |
+
|
33 |
+
Steps:
|
34 |
+
"""
|
35 |
try:
|
36 |
+
response = self.client.chat.completions.create(
|
37 |
+
model="gpt-4-turbo",
|
38 |
+
messages=[{"role": "user", "content": steps_prompt}],
|
39 |
+
temperature=0,
|
40 |
+
timeout=15
|
41 |
+
)
|
42 |
+
return response.choices[0].message.content.strip()
|
43 |
except:
|
44 |
+
return "Step 1: Try to understand the question."
|
45 |
+
|
46 |
+
def search_with_steps(self, question, steps):
|
47 |
+
combined_prompt = f"""
|
48 |
+
You are a knowledgeable assistant. Given the following plan:
|
49 |
+
|
50 |
+
{steps}
|
51 |
|
52 |
+
Answer the original question using verified and precise information.
|
53 |
+
Return only the final answer, nothing else.
|
54 |
+
|
55 |
+
Question: {question}
|
56 |
+
"""
|
57 |
try:
|
58 |
+
web_context = self.search_tool.run(question)[:2000]
|
59 |
response = self.client.chat.completions.create(
|
60 |
model="gpt-4-turbo",
|
61 |
messages=[
|
62 |
+
{"role": "system", "content": f"Use only this web data:\n{web_context}"},
|
63 |
+
{"role": "user", "content": combined_prompt}
|
64 |
],
|
65 |
temperature=0,
|
66 |
+
timeout=30
|
67 |
)
|
68 |
return response.choices[0].message.content.strip()
|
69 |
except:
|
|
|
75 |
if "image" in ctype:
|
76 |
b64 = base64.b64encode(content).decode("utf-8")
|
77 |
messages = [
|
78 |
+
{"role": "system", "content": "You're a chess analyst. Return only the best move for Black that guarantees a win. Use algebraic notation."},
|
79 |
{"role": "user", "content": [
|
80 |
{"type": "text", "text": question},
|
81 |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}}
|
|
|
100 |
return "$0.00"
|
101 |
return content.decode("utf-8", errors="ignore")[:3000]
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def format_answer(self, raw, question):
|
104 |
raw = raw.strip().strip("\"'")
|
105 |
q = question.lower()
|
|
|
|
|
106 |
if "algebraic notation" in q:
|
107 |
match = re.search(r"[KQBNR]?[a-h]?[1-8]?x?[a-h][1-8][+#]?", raw)
|
108 |
return match.group(0) if match else raw
|
109 |
if "award number" in q:
|
110 |
match = re.search(r"80NSSC[0-9A-Z]+", raw)
|
111 |
return match.group(0) if match else raw
|
|
|
|
|
112 |
if "usd" in q:
|
113 |
m = re.search(r"\d+(\.\d{2})", raw)
|
114 |
return f"${m.group()}" if m else "$0.00"
|
115 |
+
if "first name" in q:
|
116 |
+
return raw.split()[0]
|
117 |
try:
|
118 |
return str(w2n.word_to_num(raw))
|
119 |
except:
|
|
|
122 |
|
123 |
def __call__(self, question, task_id=None):
|
124 |
file, ctype = self.fetch_file(task_id) if task_id else (None, None)
|
125 |
+
|
126 |
+
if file:
|
127 |
+
context = self.handle_file(file, ctype, question)
|
128 |
+
return self.format_answer(context, question)
|
129 |
+
|
130 |
+
steps = self.get_step_by_step_plan(question)
|
131 |
+
raw = self.search_with_steps(question, steps)
|
132 |
return self.format_answer(raw, question)
|