dawid-lorek commited on
Commit
e14ee37
·
verified ·
1 Parent(s): 239dbcb

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +94 -27
agent.py CHANGED
@@ -1,6 +1,12 @@
1
  import os
2
  import requests
 
3
  from openai import OpenAI
 
 
 
 
 
4
 
5
  class GaiaAgent:
6
  def __init__(self):
@@ -9,42 +15,52 @@ class GaiaAgent:
9
  "You are a top-tier research assistant for the GAIA benchmark. "
10
  "You analyze documents, reason step by step, and always provide a single, concise, and correct answer. "
11
  "If a file is provided, extract all relevant information. Use only information from the question and file. "
12
- "Show your reasoning before the answer, but end with 'Final Answer: <your answer>'."
13
  )
14
  self.api_url = "https://agents-course-unit4-scoring.hf.space"
15
 
16
- def fetch_file_content(self, task_id: str) -> str:
17
  try:
18
  url = f"{self.api_url}/files/{task_id}"
19
- response = requests.get(url, timeout=15)
20
- response.raise_for_status()
21
-
22
- content_type = response.headers.get("Content-Type", "")
23
- if any(t in content_type for t in ["text", "csv", "json"]):
24
- return response.text[:6000] # Allow more context for better answers
25
- elif "application/pdf" in content_type:
26
- return "[PDF file detected. Use a PDF parser to extract text.]"
27
- else:
28
- return f"[Unsupported file type: {content_type}]"
29
  except Exception as e:
30
- return f"[Error downloading or reading file: {e}]"
31
 
32
- def __call__(self, question: str, task_id: str = None) -> str:
33
- file_context = ""
34
- if task_id:
35
- file_context = self.fetch_file_content(task_id)
36
- if file_context:
37
- file_context = f"Here is the related file content:\n{file_context}\n"
38
 
39
- prompt = (
40
- f"{self.instructions}\n\n"
41
- f"{file_context}"
42
- f"Question: {question}\n"
43
- "Show your reasoning step by step, then provide the final answer as 'Final Answer: <answer>'."
44
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
 
46
  response = self.client.chat.completions.create(
47
- model="gpt-4o", # Use the latest, most capable model for better accuracy
48
  messages=[
49
  {"role": "system", "content": self.instructions},
50
  {"role": "user", "content": prompt}
@@ -52,5 +68,56 @@ class GaiaAgent:
52
  temperature=0.0,
53
  max_tokens=1024,
54
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- return response.choices[0].message.content.strip()
 
 
1
  import os
2
  import requests
3
+ import mimetypes
4
  from openai import OpenAI
5
+ from duckduckgo_search import DDGS
6
+ from PIL import Image
7
+ import pytesseract
8
+ import io
9
+ import openpyxl
10
 
11
  class GaiaAgent:
12
  def __init__(self):
 
15
  "You are a top-tier research assistant for the GAIA benchmark. "
16
  "You analyze documents, reason step by step, and always provide a single, concise, and correct answer. "
17
  "If a file is provided, extract all relevant information. Use only information from the question and file. "
18
+ "Always output only 'Final Answer: <answer>' as the last line, no explanation after."
19
  )
20
  self.api_url = "https://agents-course-unit4-scoring.hf.space"
21
 
22
+ def fetch_file(self, task_id: str):
23
  try:
24
  url = f"{self.api_url}/files/{task_id}"
25
+ resp = requests.get(url, timeout=15)
26
+ resp.raise_for_status()
27
+ content_type = resp.headers.get("Content-Type", "")
28
+ return resp.content, content_type
 
 
 
 
 
 
29
  except Exception as e:
30
+ return None, None
31
 
32
+ def ocr_image(self, img_bytes):
33
+ try:
34
+ img = Image.open(io.BytesIO(img_bytes))
35
+ return pytesseract.image_to_string(img)
36
+ except Exception as e:
37
+ return "[ERROR: Unable to OCR image]"
38
 
39
+ def read_excel(self, file_bytes):
40
+ try:
41
+ wb = openpyxl.load_workbook(io.BytesIO(file_bytes), data_only=True)
42
+ sheet = wb.active
43
+ rows = list(sheet.iter_rows(values_only=True))
44
+ text = "\n".join(["\t".join(str(cell) if cell is not None else "" for cell in row) for row in rows])
45
+ return text
46
+ except Exception as e:
47
+ return "[ERROR: Unable to read Excel file]"
48
+
49
+ def web_search(self, query, max_results=3):
50
+ try:
51
+ ddgs = DDGS()
52
+ results = ddgs.text(query)
53
+ summaries = []
54
+ for i, r in enumerate(results):
55
+ if i >= max_results: break
56
+ summaries.append(f"{r['title']}: {r['body']}")
57
+ return "\n".join(summaries)
58
+ except Exception as e:
59
+ return f"[ERROR: Web search failed: {e}]"
60
 
61
+ def call_llm(self, prompt):
62
  response = self.client.chat.completions.create(
63
+ model="gpt-4o",
64
  messages=[
65
  {"role": "system", "content": self.instructions},
66
  {"role": "user", "content": prompt}
 
68
  temperature=0.0,
69
  max_tokens=1024,
70
  )
71
+ return response.choices[0].message.content.strip()
72
+
73
+ def parse_final_answer(self, text):
74
+ for line in reversed(text.splitlines()):
75
+ if "Final Answer:" in line:
76
+ return line.replace("Final Answer:", "").strip()
77
+ # fallback
78
+ return text.strip()
79
+
80
+ def __call__(self, question: str, task_id: str = None) -> str:
81
+ file_context = ""
82
+ file_text = ""
83
+ file_type = None
84
+
85
+ # Step 1: Download and process file if provided
86
+ if task_id:
87
+ file_bytes, content_type = self.fetch_file(task_id)
88
+ if not file_bytes or not content_type:
89
+ file_context = "[ERROR: Could not download file]"
90
+ elif "image" in content_type:
91
+ file_text = self.ocr_image(file_bytes)
92
+ file_context = f"Extracted text from image:\n{file_text}\n"
93
+ elif "spreadsheet" in content_type or "excel" in content_type or task_id.endswith(".xlsx"):
94
+ file_text = self.read_excel(file_bytes)
95
+ file_context = f"Extracted text from Excel:\n{file_text}\n"
96
+ elif "text" in content_type or "csv" in content_type or "json" in content_type:
97
+ file_text = file_bytes.decode(errors="ignore")[:6000]
98
+ file_context = f"File content:\n{file_text}\n"
99
+ else:
100
+ file_context = "[Unsupported or unknown file type]\n"
101
+
102
+ # Step 2: Use web search for open-domain/factual questions
103
+ # Basic heuristics: if the question is about a person, place, number, award, year, etc., try a search
104
+ search_needed = False
105
+ search_keywords = ["who", "what", "when", "where", "name", "number", "how many", "first", "last", "award", "recipient"]
106
+ if any(kw in question.lower() for kw in search_keywords):
107
+ search_results = self.web_search(question)
108
+ if search_results and "ERROR" not in search_results:
109
+ file_context += f"\nHere are relevant web search results:\n{search_results}\n"
110
+ search_needed = True
111
+
112
+ # Step 3: Build LLM prompt
113
+ prompt = (
114
+ f"{self.instructions}\n\n"
115
+ f"{file_context}"
116
+ f"Question: {question}\n"
117
+ "Show your reasoning step by step, then provide the final answer as 'Final Answer: <answer>'."
118
+ )
119
+ llm_response = self.call_llm(prompt)
120
+ answer = self.parse_final_answer(llm_response)
121
 
122
+ # Step 4: Enforce strict output: only final answer, no extra lines
123
+ return answer