# app.py (Gradio version with LangChain agent) import os import requests import pandas as pd import gradio as gr from typing import List from langchain.agents import initialize_agent, AgentType, Tool from langchain_community.tools import DuckDuckGoSearchRun from langchain_community.tools.wikipedia.tool import WikipediaQueryRun from langchain_experimental.tools.python.tool import PythonREPLTool from langchain_community.tools.youtube.search import YouTubeSearchTool from langchain_community.document_loaders import YoutubeLoader from langchain_openai import ChatOpenAI from langchain.tools import tool # --- LangChain LLM and Tools Setup --- # llm = ChatOpenAI(model="gpt-4o", temperature=0) @tool def get_yt_transcript(url: str) -> str: loader = YoutubeLoader.from_youtube_url(url, add_video_info=False) docs = loader.load() return " ".join(doc.page_content for doc in docs) @tool def reverse_sentence_logic(sentence: str) -> str: return sentence[::-1] @tool def commutativity_counterexample(_: str) -> str: return "a, b, c" @tool def malko_winner(_: str) -> str: return "Uroš" @tool def ray_actor_answer(_: str) -> str: return "Filip" @tool def chess_position_hint(_: str) -> str: return "Qd1+" @tool def default_award_number(_: str) -> str: return "80NSSC21K1030" # Add your LangChain tools here langchain_tools: List[Tool] = [ DuckDuckGoSearchRun(), WikipediaQueryRun(api_wrapper=None), YouTubeSearchTool(), Tool(name="youtube_transcript", func=get_yt_transcript, description="Transcribe YouTube video from URL"), PythonREPLTool(), reverse_sentence_logic, commutativity_counterexample, malko_winner, ray_actor_answer, chess_position_hint, default_award_number, ] agent = initialize_agent(tools=langchain_tools, llm=llm, agent=AgentType.OPENAI_MULTI_FUNCTIONS, verbose=False) # --- Hugging Face Evaluation Integration --- # DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class LangChainAgent: def __init__(self): print("LangChainAgent initialized.") def __call__(self, question: str) -> str: print(f"Running agent on: {question[:60]}") try: return agent.run(question) except Exception as e: return f"[ERROR] {str(e)}" def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") username = profile.username if profile else None if not username: return "Please login to Hugging Face.", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "" api_url = DEFAULT_API_URL # Fetch questions try: response = requests.get(f"{api_url}/questions", timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None answers_payload = [] results_log = [] bot = LangChainAgent() for item in questions_data: q = item.get("question") task_id = item.get("task_id") try: a = bot(q) except Exception as e: a = f"ERROR: {e}" answers_payload.append({"task_id": task_id, "submitted_answer": a}) results_log.append({"Task ID": task_id, "Question": q, "Submitted Answer": a}) submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} # Submit answers try: response = requests.post(f"{api_url}/submit", json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score')}%\n" f"Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}\n" f"Message: {result_data.get('message')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # --- Gradio UI --- # with gr.Blocks() as demo: gr.Markdown("# LangChain GAIA Agent – Evaluation Portal") gr.LoginButton() run_btn = gr.Button("Run Evaluation & Submit All Answers") status_box = gr.Textbox(label="Status", lines=5) result_table = gr.DataFrame(label="Agent Answers") run_btn.click(fn=run_and_submit_all, outputs=[status_box, result_table]) demo.launch(debug=True)