# agent.py from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI from llama_index.core.agent.workflow import AgentWorkflow from llama_index.core.tools import FunctionTool from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun from langchain_experimental.tools.python.tool import PythonREPLTool from langchain_community.document_loaders import YoutubeLoader # Define all tool functions with type annotations def search_duckduckgo(query: str) -> str: """Use DuckDuckGo to search the internet.""" return DuckDuckGoSearchRun().run(query) def search_wikipedia(query: str) -> str: """Use Wikipedia to look up facts.""" return WikipediaQueryRun(api_wrapper=None).run(query) def run_python(code: str) -> str: """Execute Python code and return output.""" return PythonREPLTool().run(code) def get_youtube_transcript(url: str) -> str: """Extract transcript from YouTube video.""" loader = YoutubeLoader.from_youtube_url(url, add_video_info=False) docs = loader.load() return " ".join(doc.page_content for doc in docs) # Build tool wrappers TOOLS = [ FunctionTool.from_defaults(search_duckduckgo), FunctionTool.from_defaults(search_wikipedia), FunctionTool.from_defaults(run_python), FunctionTool.from_defaults(get_youtube_transcript), ] # Load LLM llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct") # Create LlamaIndex agent agent = AgentWorkflow.from_tools_or_functions( TOOLS, llm=llm, system_prompt="You are a helpful and smart AI agent that solves tasks using reasoning and external tools." ) # Optional: support context (stateful runs) from llama_index.core.workflow import Context ctx = Context(agent) async def answer_question(question: str) -> str: """Run the agent on a single question.""" return await agent.arun(question)