import os import gradio as gr import requests import pandas as pd import openai from smolagents.agents import ToolCallingAgent from langchain_community.tools import PythonREPLTool as CodeInterpreterTool from langchain_community.tools import DuckDuckGoSearchRun # Constants DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Agent Definition with Tools --- class SmartGAIAAgent: def __init__(self): self.api_key = os.getenv("OPENAI_API_KEY") if not self.api_key: raise ValueError("Missing OPENAI_API_KEY") openai.api_key = self.api_key # Define tools self.search = DuckDuckGoSearchRun() self.calculator = CodeInterpreterTool() # Create tool-using agent self.agent = ToolCallingAgent( tools=[self.search, self.calculator], model="gpt-4", max_steps=8, system_prompt=( "You are a helpful assistant solving complex reasoning and factual questions. " "Use tools only if needed. Return only the final answer. Do not add explanations or formatting." ) ) def __call__(self, question: str) -> str: try: result = self.agent.run(question) return result.strip() except Exception as e: print(f"Agent error: {e}") return "error" def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = SmartGAIAAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Code link: {agent_code}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None answers_payload = [] results_log = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or not question_text: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}" }) if not answers_payload: return "No answers were submitted.", pd.DataFrame(results_log) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score')}% " f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n" f"Message: {result_data.get('message')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# GAIA Agent Evaluation") gr.Markdown(""" **Instructions:** 1. Log in to Hugging Face 2. Click 'Run Evaluation' to generate and submit answers 3. Wait for the results """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Submission Status", lines=5) results_table = gr.DataFrame(label="Results") run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("Launching Gradio Interface...") demo.launch(debug=True, share=False)