import os import requests from openai import OpenAI class GaiaAgent: def __init__(self): self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) self.instructions = ( "You are a highly skilled and concise research assistant solving GAIA benchmark questions.\n" "Analyze attached files, extract relevant information, reason step-by-step internally,\n" "and return only the final factual answer in the correct format. Avoid explanations." ) self.api_url = "https://agents-course-unit4-scoring.hf.space" def fetch_file_content(self, task_id: str) -> str: try: url = f"{self.api_url}/files/{task_id}" response = requests.get(url, timeout=10) response.raise_for_status() content_type = response.headers.get("Content-Type", "") if "text" in content_type or "csv" in content_type or "json" in content_type: return response.text[:3000] # Truncate to 3000 chars elif "application/pdf" in content_type: return "[PDF detected. Summarize manually if needed.]" elif "image" in content_type: return "[Image detected. Describe the image if needed.]" elif "audio" in content_type: return "[Audio detected. Provide transcription if needed.]" else: return f"[Unsupported file type: {content_type}]" except Exception as e: return f"[Error fetching file: {e}]" def __call__(self, question: str, task_id: str = None) -> str: file_context = "" if task_id: file_context = self.fetch_file_content(task_id) if file_context: file_context = f"Attached File Context:\n{file_context}\n" # Add scratchpad-like structure prompt = ( f"{self.instructions}\n\n" f"{file_context}" f"Question: {question}\n" f"Think step-by-step to extract relevant facts and solve the task.\n" f"Final Answer (no explanation, just the answer):" ) response = self.client.chat.completions.create( model="gpt-4-turbo", messages=[ {"role": "system", "content": self.instructions}, {"role": "user", "content": prompt} ], temperature=0.0, ) return response.choices[0].message.content.strip()