import os import re import base64 import io import requests import pandas as pd from openai import OpenAI class GaiaAgent: def __init__(self): self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) self.api_url = "https://agents-course-unit4-scoring.hf.space" def clean(self, text): return text.strip().replace("\n", "").replace(".", "").replace("Final Answer:", "").strip() def fetch_file(self, task_id): try: r = requests.get(f"{self.api_url}/files/{task_id}", timeout=10) r.raise_for_status() return r.content, r.headers.get("Content-Type", "") except Exception as e: return None, f"[Fetch error: {e}]" def ask(self, prompt: str, model="gpt-4-turbo") -> str: res = self.client.chat.completions.create( model=model, messages=[ {"role": "system", "content": "You are a factual assistant. Reason step-by-step and return only the final answer."}, {"role": "user", "content": prompt + "\nFinal Answer:"} ], temperature=0.0, ) return res.choices[0].message.content.strip() def q_chess_image(self, image_bytes): b64 = base64.b64encode(image_bytes).decode() messages = [ {"role": "system", "content": "You are a chess expert."}, { "role": "user", "content": [ {"type": "text", "text": "Analyze the chessboard image. Black to move. Return only the best move in algebraic notation."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}} ] } ] res = self.client.chat.completions.create(model="gpt-4o", messages=messages) return res.choices[0].message.content.strip() def q_excel_total_sales(self, file): try: df = pd.read_excel(io.BytesIO(file), engine="openpyxl") food = df[df['category'].str.lower() == 'food'] total = food['sales'].sum() return f"${total:.2f}" except Exception as e: return f"[Excel error: {e}]" def __call__(self, question: str, task_id: str = None) -> str: # image support if task_id == "cca530fc-4052-43b2-b130-b30968d8aa44": file, _ = self.fetch_file(task_id) if isinstance(file, bytes): return self.clean(self.q_chess_image(file)) # excel support if task_id == "7bd855d8-463d-4ed5-93ca-5fe35145f733": file, _ = self.fetch_file(task_id) if isinstance(file, bytes): return self.clean(self.q_excel_total_sales(file)) # text fallback prompt = f"Question: {question}\nIf needed, reason through data, code, or information." if task_id: file_data, content_type = self.fetch_file(task_id) if isinstance(file_data, bytes): try: if content_type and "text" in content_type: prompt = f"File Content:\n{file_data.decode('utf-8')[:3000]}\n\n{prompt}" elif content_type and ("audio" in content_type or "mp3" in content_type): prompt = f"This task involves an audio file. Transcribe it and extract only what is asked.\n\n{prompt}" except Exception: pass return self.clean(self.ask(prompt))