# agent.py — final version with working ReActAgent import asyncio from llama_index.llms.openai import OpenAI from llama_index.core.tools import FunctionTool from llama_index.core.agent.react.base import ReActAgent from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun from langchain_experimental.tools.python.tool import PythonREPLTool from langchain_community.document_loaders import YoutubeLoader # Tool wrappers def search_duckduckgo(query: str) -> str: return DuckDuckGoSearchRun().run(query) def search_wikipedia(query: str) -> str: return WikipediaQueryRun(api_wrapper=None).run(query) def run_python(code: str) -> str: return PythonREPLTool().run(code) def get_youtube_transcript(url: str) -> str: loader = YoutubeLoader.from_youtube_url(url, add_video_info=False) docs = loader.load() return " ".join(doc.page_content for doc in docs) TOOLS = [ FunctionTool.from_defaults(search_duckduckgo), FunctionTool.from_defaults(search_wikipedia), FunctionTool.from_defaults(run_python), FunctionTool.from_defaults(get_youtube_transcript), ] llm = OpenAI(model="gpt-4") agent = ReActAgent.from_tools( tools=TOOLS, llm=llm, verbose=False, system_prompt=""" You are an expert AI assistant participating in the GAIA benchmark. Your task is to answer questions as precisely and exactly as possible. Each answer is evaluated automatically—strict formatting matters. Rules: 1. Output ONLY the final answer—NO explanation or commentary. 2. Format exactly as requested (lists, names, numbers, chess moves, currency). 3. Use tools as needed—no guessing. """, ) def answer_question_sync(question: str) -> str: try: response = agent.chat(question) return response.response.content.strip() except Exception as e: return f"[ERROR] {e}" async def answer_question(question: str) -> str: # wrap synchronous call in asyncio to keep compatibility return answer_question_sync(question)