import os import requests import mimetypes from openai import OpenAI from duckduckgo_search import DDGS from PIL import Image import pytesseract import io import openpyxl class GaiaAgent: def __init__(self): self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) self.instructions = ( "You are a top-tier research assistant for the GAIA benchmark. " "You analyze documents, reason step by step, and always provide a single, concise, and correct answer. " "If a file is provided, extract all relevant information. Use only information from the question and file. " "Always output only 'Final Answer: ' as the last line, no explanation after." ) self.api_url = "https://agents-course-unit4-scoring.hf.space" def fetch_file(self, task_id: str): try: url = f"{self.api_url}/files/{task_id}" resp = requests.get(url, timeout=15) resp.raise_for_status() content_type = resp.headers.get("Content-Type", "") return resp.content, content_type except Exception as e: return None, None def ocr_image(self, img_bytes): try: img = Image.open(io.BytesIO(img_bytes)) return pytesseract.image_to_string(img) except Exception as e: return "[ERROR: Unable to OCR image]" def read_excel(self, file_bytes): try: wb = openpyxl.load_workbook(io.BytesIO(file_bytes), data_only=True) sheet = wb.active rows = list(sheet.iter_rows(values_only=True)) text = "\n".join(["\t".join(str(cell) if cell is not None else "" for cell in row) for row in rows]) return text except Exception as e: return "[ERROR: Unable to read Excel file]" def web_search(self, query, max_results=3): try: ddgs = DDGS() results = ddgs.text(query) summaries = [] for i, r in enumerate(results): if i >= max_results: break summaries.append(f"{r['title']}: {r['body']}") return "\n".join(summaries) except Exception as e: return f"[ERROR: Web search failed: {e}]" def call_llm(self, prompt): response = self.client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": self.instructions}, {"role": "user", "content": prompt} ], temperature=0.0, max_tokens=1024, ) return response.choices[0].message.content.strip() def parse_final_answer(self, text): for line in reversed(text.splitlines()): if "Final Answer:" in line: return line.replace("Final Answer:", "").strip() # fallback return text.strip() def __call__(self, question: str, task_id: str = None) -> str: file_context = "" file_text = "" file_type = None # Step 1: Download and process file if provided if task_id: file_bytes, content_type = self.fetch_file(task_id) if not file_bytes or not content_type: file_context = "[ERROR: Could not download file]" elif "image" in content_type: file_text = self.ocr_image(file_bytes) file_context = f"Extracted text from image:\n{file_text}\n" elif "spreadsheet" in content_type or "excel" in content_type or task_id.endswith(".xlsx"): file_text = self.read_excel(file_bytes) file_context = f"Extracted text from Excel:\n{file_text}\n" elif "text" in content_type or "csv" in content_type or "json" in content_type: file_text = file_bytes.decode(errors="ignore")[:6000] file_context = f"File content:\n{file_text}\n" else: file_context = "[Unsupported or unknown file type]\n" # Step 2: Use web search for open-domain/factual questions # Basic heuristics: if the question is about a person, place, number, award, year, etc., try a search search_needed = False search_keywords = ["who", "what", "when", "where", "name", "number", "how many", "first", "last", "award", "recipient"] if any(kw in question.lower() for kw in search_keywords): search_results = self.web_search(question) if search_results and "ERROR" not in search_results: file_context += f"\nHere are relevant web search results:\n{search_results}\n" search_needed = True # Step 3: Build LLM prompt prompt = ( f"{self.instructions}\n\n" f"{file_context}" f"Question: {question}\n" "Show your reasoning step by step, then provide the final answer as 'Final Answer: '." ) llm_response = self.call_llm(prompt) answer = self.parse_final_answer(llm_response) # Step 4: Enforce strict output: only final answer, no extra lines return answer