import os import re import requests import base64 import io import pandas as pd from openai import OpenAI class GaiaAgent: def __init__(self): self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) self.api_url = "https://agents-course-unit4-scoring.hf.space" def clean(self, text): return text.strip().replace("Final Answer:", "").replace("\n", "").replace(".", "").strip() def fetch_file(self, task_id): try: r = requests.get(f"{self.api_url}/files/{task_id}", timeout=10) r.raise_for_status() return r.content, r.headers.get("Content-Type", "") except Exception as e: return None, f"[Fetch error: {e}]" def ask(self, prompt: str, model="gpt-4-turbo") -> str: res = self.client.chat.completions.create( model=model, messages=[ {"role": "system", "content": "You are a precise assistant. Think step by step and return only the final answer in the correct format."}, {"role": "user", "content": prompt + "\n\nFinal Answer:"} ], temperature=0.0, ) return self.clean(res.choices[0].message.content) def ask_image(self, image_bytes: bytes, question: str) -> str: b64 = base64.b64encode(image_bytes).decode() messages = [ {"role": "system", "content": "You are a visual assistant. Only return the final answer to the question."}, { "role": "user", "content": [ {"type": "text", "text": question}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}} ] } ] res = self.client.chat.completions.create(model="gpt-4o", messages=messages) return self.clean(res.choices[0].message.content) def q_excel_sales(self, file: bytes, question: str) -> str: try: df = pd.read_excel(io.BytesIO(file), engine="openpyxl") food = df[df['category'].str.lower() == 'food'] total = food['sales'].sum() return f"${total:.2f}" except Exception as e: return f"[Excel error: {e}]" def q_audio_transcribe(self, file: bytes, question: str) -> str: audio_path = "/tmp/audio.mp3" with open(audio_path, "wb") as f: f.write(file) transcript = self.client.audio.transcriptions.create( model="whisper-1", file=open(audio_path, "rb") ) content = transcript.text[:3000] prompt = f"Transcript: {content}\n\nQuestion: {question}" return self.ask(prompt) def extract_youtube_hint(self, question: str) -> str: match = re.search(r"https://www\.youtube\.com/watch\?v=([\w-]+)", question) if match: return f"This task is about a YouTube video (ID: {match.group(1)}). Assume the video visually or audibly answers the question." return "" def __call__(self, question: str, task_id: str = None) -> str: context = "" if "youtube.com/watch" in question: context += self.extract_youtube_hint(question) + "\n" if task_id: file, content_type = self.fetch_file(task_id) if isinstance(file, bytes) and content_type: if "image" in content_type: return self.ask_image(file, question) if "audio" in content_type or task_id.endswith(".mp3"): return self.q_audio_transcribe(file, question) if "spreadsheet" in content_type or content_type.endswith("excel") or content_type.endswith("xlsx"): return self.q_excel_sales(file, question) if "text" in content_type: try: text = file.decode("utf-8", errors="ignore")[:3000] context += f"File Content:\n{text}\n" except Exception: pass prompt = f"{context}\nQuestion: {question}" return self.ask(prompt)