import os import gradio as gr import requests import pandas as pd from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel # Constants DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" MAX_QUESTION_LENGTH = 4000 # to avoid GPT-4 8k token limit # --- Agent Definition using smolagents --- class SmartGAIAAgent: def __init__(self): self.api_key = os.getenv("OPENAI_API_KEY") if not self.api_key: raise ValueError("Missing OPENAI_API_KEY") self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key) # Agent with DuckDuckGo + built-in Python interpreter self.agent = CodeAgent( tools=[DuckDuckGoSearchTool()], model=self.model, add_base_tools=True ) def __call__(self, question: str) -> str: try: question = question[:MAX_QUESTION_LENGTH] result = self.agent.run(question) return result.strip() except Exception as e: print(f"Agent error: {e}") return "error" def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = SmartGAIAAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Code link: {agent_code}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None answers_payload = [] results_log = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") # Skip invalid or long/multimodal questions if not task_id or not question_text: continue if len(question_text) > MAX_QUESTION_LENGTH: print(f"Skipping long question: {task_id}") continue if any(keyword in question_text.lower() for keyword in ['attached', '.mp3', '.wav', '.png', '.jpg', 'image']): print(f"Skipping file/audio/image question: {task_id}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}" }) if not answers_payload: return "No answers were submitted.", pd.DataFrame(results_log) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\\n" f"User: {result_data.get('username')}\\n" f"Score: {result_data.get('score')}% " f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\\n" f"Message: {result_data.get('message')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# GAIA Agent Evaluation") gr.Markdown(""" **Instructions:** 1. Log in to Hugging Face 2. Click 'Run Evaluation' to generate and submit answers 3. Wait for the results """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Submission Status", lines=5) results_table = gr.DataFrame(label="Results") run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("Launching Gradio Interface...") demo.launch(debug=True, share=False)