# app.py import os import requests import pandas as pd import gradio as gr from agent import answer_question import asyncio DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class GAIALlamaAgent: def __init__(self): print("āœ… LangChain/LlamaIndex Agent initialized.") def __call__(self, question: str) -> str: print(f"šŸ“Ø Agent received: {question[:50]}...") try: return asyncio.run(answer_question(question)) except Exception as e: return f"[ERROR] {str(e)}" def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") username = profile.username if profile else None if not username: return "Please log in to Hugging Face.", None print(f"šŸ‘¤ User: {username}") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() print(f"šŸ“„ Fetched {len(questions_data)} questions") except Exception as e: return f"āŒ Error fetching questions: {e}", None agent = GAIALlamaAgent() answers_payload = [] results_log = [] for item in questions_data: qid = item.get("task_id") question = item.get("question") if not qid or not question: continue try: answer = agent(question) except Exception as e: answer = f"[AGENT ERROR] {e}" answers_payload.append({"task_id": qid, "submitted_answer": answer}) results_log.append({"Task ID": qid, "Question": question, "Submitted Answer": answer}) if not answers_payload: return "No answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() status = ( f"āœ… Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score')}%\n" f"Correct: {result_data.get('correct_count')}/{result_data.get('total_attempted')}\n" f"Message: {result_data.get('message')}" ) return status, pd.DataFrame(results_log) except Exception as e: return f"āŒ Submission failed: {e}", pd.DataFrame(results_log) # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown(""" # 🧠 GAIA Agent Evaluation This app runs a LlamaIndex + LangChain powered agent through the GAIA benchmark. 1. Login to Hugging Face below 2. Click **Run Evaluation** to test all questions 3. Answers will be submitted and scored """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("\nšŸ” App Starting Up...") if os.getenv("SPACE_ID"): print(f"šŸ”— Space: https://huggingface.co/spaces/{os.getenv('SPACE_ID')}") demo.launch(debug=True)