Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,828 Bytes
0816484 ccc66a4 0816484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import spaces
import gradio as gr
import numpy as np
import random
import functools
import os
import torch
from diffusers import FluxPipeline
from peft import LoraConfig, get_peft_model, PeftModel
huggingface_token = os.getenv("HF_TOKEN")
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
token=huggingface_token,
custom_pipeline='quickjkee/swd_pipeline_flux').to('cuda')
distill_check = 'yresearch/swd_flux'
pipe.transformer = PeftModel.from_pretrained(
pipe.transformer,
distill_check,
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU()
def infer(prompt, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
sigmas = [1.0000, 0.8956, 0.7363, 0.6007, 0.0000]
scales = [64, 80, 96, 128]
image = pipe(
prompt=prompt,
height=int(scales[0] * 8),
width=int(scales[0] * 8),
scales=scales,
sigmas=sigmas,
timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000,
guidance_scale=4.5,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
return image
examples = [
"3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background",
'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A gold astronaut meditating in a lush green forest by a lake",
"A group of friends sitting around a campfire."
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Scale-wise Distillation | FLUX.1 [dev] ⚡
# ⚡ Image Generation with 4-step SwD ⚡
This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/),
a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397)
by [Yandex Research](https://github.com/yandex-research).
Currently running on {power_device}.
"""
)
gr.Markdown(
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/swd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
gr.Examples(
examples=examples,
inputs=[prompt],
cache_examples=False
)
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed],
outputs=[result]
)
demo.queue().launch(share=False) |