Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer | |
| from transformers import AutoModelForSequenceClassification | |
| from transformers import pipeline | |
| # Load HUPD dataset | |
| dataset_dict = load_dataset('HUPD/hupd', | |
| name='sample', | |
| data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", | |
| icpr_label=None, | |
| train_filing_start_date='2016-01-01', | |
| train_filing_end_date='2016-01-21', | |
| val_filing_start_date='2016-01-22', | |
| val_filing_end_date='2016-01-31', | |
| ) | |
| # Process data | |
| filtered_dataset = dataset_dict['validation'].filter(lambda e: e['decision'] == 'ACCEPTED' or e['decision'] == 'REJECTED') | |
| dataset = filtered_dataset.shuffle(seed=42).select(range(20)) | |
| dataset = dataset.sort("patent_number") | |
| # Create pipeline using model trainned on Colab | |
| model = torch.load("/workspaces/cs-gy-6613-project/patent_classification(1).pt", map_location=torch.device('cpu')) | |
| tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") | |
| classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
| def load_patent(): | |
| selected_application = dataset.select([applications[st.session_state.id]]) | |
| st.session_state.abstract = selected_application['abstract'][0] | |
| st.session_state.claims = selected_application['claims'][0] | |
| st.session_state.title = selected_application['title'][0] | |
| st.title("CS-GY-6613 Project Milestone 3") | |
| # List patent numbers for select box | |
| applications = {} | |
| for ds_index, example in enumerate(dataset): | |
| applications.update({example['patent_number']: ds_index }) | |
| st.selectbox("Select a patent application:", applications, on_change=load_patent, key="id") | |
| # Application title displayed for additional context only, not used with model | |
| st.text_area("Title", key="title", value=dataset[0]['title'], height=50) | |
| # Classifier input form | |
| with st.form('Input Form'): | |
| abstract = st.text_area("Abstract", key="abstract", value=dataset[0]['abstract'], height=200) | |
| claims = st.text_area("Claims", key="claims", value=dataset[0]['abstract'], height=200) | |
| submitted = st.form_submit_button("Get Patentability Score") | |
| if submitted: | |
| selected_application = dataset.select([applications[st.session_state.id]]) | |
| res = classifier(abstract, claims) | |
| if res[0]["label"] == 'LABEL_0': | |
| pred = "ACCEPTED" | |
| elif res[0]["label"] == 'LABEL_1': | |
| pred = "REJECTED" | |
| score = res[0]["score"] | |
| label = selected_application['decision'][0] | |
| result = st.markdown("This text was classified as **{}** with a confidence score of **{}**.".format(pred, score)) | |
| check = st.markdown("Actual Label: **{}**.".format(label)) | |