File size: 7,007 Bytes
05d029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48fbeda
 
 
 
 
 
 
 
 
05d029a
 
48fbeda
05d029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import NearestNeighbors
import pickle

# Set page config
st.set_page_config(
    page_title="FIFA 19 Player Recommender",
    page_icon="⚽",
    layout="wide"
)

# Load all pickle files
@st.cache_resource
def load_data():
    try:
        # Load DataFrames from CSV
        df3 = pd.read_csv('newdf3.csv', index_col=0)
        predictors_scaled = pd.read_csv('predictorsscale.csv', index_col=0)
        predictors_df = pd.read_csv('newpredictors.csv', index_col=0)
        train_predictors_val = pd.read_csv('train_predictors_val.csv', index_col=0)
        fifa = pd.read_csv('newfifa.csv', index_col=0)
        df3scaled = pd.read_csv('df3scaled.csv', index_col=0)
        
        # Only the model needs to stay as pickle
        with open('finalxbrmodel.pkl', 'rb') as f:
            xbr = pickle.load(f)
            
        return df3, predictors_scaled, predictors_df, train_predictors_val, fifa, df3scaled, xbr
    except Exception as e:
        st.error(f"Error loading data: {str(e)}")
        raise e

# Load data
df3, predictors_scaled, predictors_df, train_predictors_val, fifa, df3scaled, xbr = load_data()
predscale_target = predictors_scaled.columns.tolist()

def player_sim_team(team, position, NUM_RECOM, AGE_upper_bound):
# part 1(recommendation)
    target_cols = predscale_target


# team stats
    team_stats = df3scaled.query('position_group == @position and Club == @team').head(3)[target_cols].mean(axis=0)
    team_stats_np = team_stats.values

# player stats by each position
    ply_stats = df3scaled.query('position_group == @position and Club != @team and Age1 <= @AGE_upper_bound')[
    ['ID'] + target_cols]
    ply_stats_np = ply_stats[target_cols].values
    X = np.vstack((team_stats_np, ply_stats_np))

## KNN
    nbrs = NearestNeighbors(n_neighbors=NUM_RECOM + 1, algorithm='auto').fit(X)
    dist, rank = nbrs.kneighbors(X)


    global indice
    global predicted_players_name
    global predicted_players_value
    global predictions

    indice = ply_stats.iloc[rank[0, 1:]].index.tolist()
    predicted_players_name=df3['Name'].loc[indice,].tolist()
    predicted_players_value=fifa['Value'].loc[indice,].tolist()
    display_df1 = predictors_scaled.loc[indice,]
    playrpredictorss = predictors_df.loc[indice,]
    display_df2 = df3.loc[indice,]
    display_df = fifa.loc[indice,]


#part 2(prediction)
    predictors_anomaly_processed=playrpredictorss[playrpredictorss.index.isin(list(display_df2['ID']))].copy()
    predictors_anomaly_processed['Forward_Skill'] = predictors_anomaly_processed.loc[:,['LS',  'ST', 'RS',  'LW', 'LF', 'CF', 'RF', 'RW']].mean(axis=1)

    predictors_anomaly_processed['Midfield_Skill'] = predictors_anomaly_processed.loc[:,['LAM','CAM','RAM', 'LM', 'LCM', 'CM' ,'RCM', 'RM','LDM', 'CDM', 'RDM']].mean(axis=1)

    predictors_anomaly_processed['Defence_Skill'] = predictors_anomaly_processed.loc[:,['LWB','RWB', 'LB','LCB','CB','RCB','RB']].mean(axis=1)

    predictors_anomaly_processed = predictors_anomaly_processed.drop(['LS',  'ST', 'RS',  'LW', 'LF', 'CF', 'RF', 'RW',
          'LAM','CAM','RAM', 'LM', 'LCM', 'CM' ,'RCM', 'RM','LDM', 'CDM', 'RDM',
          'LWB','RWB', 'LB','LCB','CB','RCB','RB'], axis = 1)

    predictors_anomaly_processed=predictors_anomaly_processed.drop(predictors_anomaly_processed.iloc[:,predictors_anomaly_processed.columns.get_loc('Position_CAM'):predictors_anomaly_processed.columns.get_loc('Position_ST')+1], axis=1)

    predictors_anomaly_processed=predictors_anomaly_processed[train_predictors_val.columns]
    predictors_anomaly_processed[['International Reputation','Real Face']]=predictors_anomaly_processed[['International Reputation','Real Face']].astype('category')

    scaler = StandardScaler()
    predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include=['float64','float32','int64','int32'], exclude=['category']).columns] = scaler.fit_transform(predictors_anomaly_processed.select_dtypes(include=['float64','float32','int64','int32'], exclude=['category']))
    predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include='category').columns]=predictors_anomaly_processed[predictors_anomaly_processed.select_dtypes(include='category').columns].astype('int')


    predictions = abs(xbr.predict(predictors_anomaly_processed))
    predictions = predictions.astype('int64')

    result=final_pred(NUM_RECOM,predictions,predicted_players_value,predicted_players_name)
    return result





def final_pred(num_of_players,b=[],c=[],d=[]):

    z=[]
    for m in range(0,num_of_players):


        c[m]=((c[m]+b[m])/2)
        z.append({"starting_bid":c[m],"player_name":d[m]})


    return z

def main():
    st.title("FIFA 19 Player Recommender 🎮⚽")
    
    # Sidebar inputs
    st.sidebar.header("Search Parameters")
    
    # Get unique teams and positions
    teams = sorted(df3['Club'].unique())
    positions = sorted(df3['position_group'].unique())
    
    team_chosen = st.sidebar.selectbox("Select Team", teams)
    postion_chosen = st.sidebar.selectbox("Select Position", positions)
    num_of_players = st.sidebar.slider("Number of Players to Recommend", 1, 10, 5)
    age_up = st.sidebar.slider("Maximum Age", 16, 45, 30)
    
    if st.sidebar.button("Get Recommendations"):
        with st.spinner("Finding similar players..."):
            recommendations = player_sim_team(team_chosen, postion_chosen, num_of_players, age_up)
            
            # Display results in a nice format
            st.subheader(f"Recommended Players for {team_chosen} - {postion_chosen}")
            
            # Create columns for each player
            cols = st.columns(min(3, len(recommendations)))
            for idx, player in enumerate(recommendations):
                col_idx = idx % 3
                with cols[col_idx]:
                    st.markdown(f"""
                    #### {player['player_name']}
                    **Estimated Value:** €{player['starting_bid']:,.2f}
                    ---
                    """)

if __name__ == '__main__':
    main()




    #print("postions=side_df,cent_df,cent_md,side_md,cent_fw,side_fw,goalkeep")
    #print("team=any club teams in any of the countries ")
    #print("*********************************************** \n")
    #team_chosen = str(input("Enter the team you are looking for:  \n"))
    #postion_chosen = str(input("Enter the position you are looking for:  \n"))
    #num_of_players = input("Enter the number of similar players you are looking for: \n")
    #age_up = input("Enter the age limit: ")
    #print("***please have some biscuits, it will take some time***")

    #player_sim_team(team_chosen,postion_chosen, int(num_of_players), int(age_up))
    #finalfunction = player_sim_team(team_chosen,postion_chosen, int(num_of_players), int(age_up))
    #pickle.dump(finalfunction, open('finalfunction.pkl', 'wb'))